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• Introduction to neutrinos.

• Machine Learning in neutrino experiments:

• NuMI Off-axis νe Appearance (NOvA).

• Micro Booster Neutrino Experiment (MicroBooNE).

• Deep Underground Neutrino Experiment (DUNE).

• Tokai to Kamioka (T2K).

• Moving to the edge:
• Inference on TPU.

• Inference on FPGA.

• Summary.
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Neutrinos
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• Neutrinos are fundamental particles.
• They belong to the Standard Model of Physics.

• Neutrinos were first detected in 1956.

• Neutrinos are ghostly particles.
• ~100 trillion (1014) neutrinos pass through your body for every second of your 

life!

• There are a billion neutrinos for each atom in the Universe. There are ~3x108

neutrinos per cubic meter.

• Neutrinos are still mysterious particles.

• Neutrinos come from “everywhere”.
• Solar neutrinos.

• Atmospheric neutrinos.

• Relic/supernova neutrinos.

• Nuclear reactor created neutrinos.

• Accelerator created neutrinos.

• Geoneutrinos, radioactive decay (even from your body).



Neutrino oscillations
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• Important discovery in 1998: neutrino oscillations.
• “Neutrino oscillation is a quantum mechanical phenomenon whereby a neutrino  

created with a specific lepton flavour (electron, muon, or tau) can later be 
measured to have a different flavour. The probability of measuring a particular 
flavour for a neutrino varies between 3 known states as it propagates through 
space.”

• Neutrino oscillations only possible if neutrinos have a non-zero mass.

• 2015 Nobel Prize:

• Takaaki Kajita, Art McDonald:

• “For the discovery of neutrino oscillations, which shows that neutrinos have mass.”

3 More Nobel prizes for 
Neutrinos since 1988:

- 2002: R. Davis and M. 
Koshiba.
- 1995: F. Reines.
- 1988: L. Lederman, M. 
Schwartz and J. Steinberger. 



Neutrino flavour
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• Neutrino flavour or interaction states:
• Electron neutrino νe (“nue”), muon neutrinos νμ (“numu”), tau neutrinos ντ (“nutau”).

• Measuring CP-violation allow us to understand how neutrinos 
(and anti-neutrinos) oscillate.

νe νμ ντ
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NOvA
• NuMI Off-axis νe Appearance (NOvA) 

is a long baseline neutrino oscillation 
experiment.

• Measures the neutrino signal close to 
its source, at Fermilab, as well as 810 
km away, at Ash River, MN.
• Aims to make precision measurements of 

neutrino oscillation parameters via the 
disappearance of νμ and appearance of νe

from neutrino oscillation.

• Pioneering on using convolutional 
neural networks (CNN) for neutrino 
identification:
• A. Aurisano et al., “A Convolutional 

Neural Network Neutrino Event 
Classifier”, arXiv:1604.01444v3.
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NB: I will only write neutrino from now on,
but the same is applicable for antineutrinos



Deep Learning in NOvA
• Initial CNN approach inspired by the 

GoogleNet architecture (InceptionV1).
• The goal was to identify particle interactions in 

sampling calorimeters.

• Called CVN (Convolutional “Visual” Network).

• The NOvA CVN classifier outperformed other 
algorithms in use by the NOvA collaboration!
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MicroBooNE

• The Micro Booster Neutrino Experiment (MicroBooNE) will 
investigate the low energy excess events observed by the 
MiniBooNE experiment, measure a suite of low energy neutrino 
cross sections, and investigate astro-particle physics.

• MicroBooNE is a large 170-ton Liquid-Argon Time Projection 
Chamber (LArTPC) neutrino experiment located on the Booster 
neutrino beamline at Fermilab.
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LArTPC

• Liquid-Argon Time Projection Chamber (LArTPC).
• This provides “images” of each neutrino interaction.
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Deep Learning MicroBooNE

• MicroBooNE developed an imaged based event reconstruction 
chain.

• See Rui An’s talk at the reconstruction and Machine learning in 
Neutrino Experiments workshop (Hamburg, September 2019):
• https://indico.desy.de/indico/event/21853/session/2/contribution/46
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SSNet
(Semantic 
Segmentation 
network)



Deep Learning MicroBooNE

• MicroBooNE developed an imaged based event reconstruction 
chain.

• See Rui An’s talk at the reconstruction and Machine learning in 
Neutrino Experiments workshop (Hamburg, September 2019):
• https://indico.desy.de/indico/event/21853/session/2/contribution/46
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arXiv: 1611.05531 

Multi-
particle 
PID 
Network 
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DUNE
• The Deep Underground Neutrino experiment (DUNE) is a next-

generation neutrino oscillation experiment.

• Far Detectors (FD) are 800 miles from the neutrino beam source.
• Four modules, each with 10,000 ton of liquid argon.

• High power neutrino beam produced at Fermilab.

• Measure CP-violation.
• Primary goal: classify the neutrino flavour as νe ,νμ , ντ or NC.

• We use a convolutional neural network (CNN) to perform the classification.

• See my talk at the Reconstruction and Machine learning in Neutrino 
Experiments workshop (Hamburg, September 2019):
• https://indico.desy.de/indico/event/21853/session/2/contribution/35
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https://indico.desy.de/indico/event/21853/session/2/contribution/35


Far Detector Data

• The Far Detectors contain three wire readout planes.
• This provides three “images” of each neutrino interaction.

• Official simulated electron neutrino interaction (signal).
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Far Detector Data

• The Far Detectors contain three wire readout planes.
• This provides three “images” of each neutrino interaction.

• Official simulated electron neutrino interaction (signal).

• Electron produces the highlighted shower, beginning at the vertex.
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DUNE CVN Architecture Overview
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Primary output:
Flavour identification

Each input image is 500 x 500 
pixels in size, corresponding to 
the images we get from the 
three wire readout planes.

First few layers treat the 
three views separately



DUNE CVN Architecture Overview
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Secondary outputs:
Particle counting for 
exclusive final states

Neutrino / antineutrino

Primary output:
Flavour identification



Training and Using the CVN

• Use millions of images (~10M images) of simulated neutrino 
interactions with the true neutrino flavour known.
• Allows the CNN to learn the features of each type of neutrino interaction.

• Tested on a fully independent sample. 

• Once the CVN is trained it is applied to images with no truth 
information attached – eventually the experimental data.

• The CVN gives probabilities for each event to be the following: 
• Charged-current                          and neutral-current (all flavours).

• Outputs sum to one.

• Use these probabilities for the event selection.

• The ArgoNeuT experiment is using the DUNE CVN for its analysis.
• See backup slides.
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Selecting Electron Neutrinos

• Electron neutrino probability spectra from the DUNE CVN.
• Curves combine neutrinos and antineutrinos.
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Electron Neutrino Efficiency

• Select all events that are 
more than 85% likely to 
be electron neutrinos.

• Over 90% selection 
efficiency in the flux 
peak.

• Efficiency better for 
antineutrinos due to 
typically cleaner final 
state (neutron instead of 
proton).
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Selecting Muon Neutrinos

• Muon neutrino probability spectra from the DUNE CVN.
• Curves combine neutrinos and antineutrinos.
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Muon Neutrino Efficiency

• Select all events that are 
more than 50% likely to 
be muon neutrinos.

• Over 90% selection 
efficiency in the flux 
peak.

• Efficiency better for 
antineutrinos due to 
typically cleaner final 
state (neutron instead of 
proton).
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Generative Models in the DUNE Photon 
Simulation

• Current DUNE photon simulation:
• Input parameters: x, y, z.
• Output: photon detector system as a 6x20 pixel image, where each pixel gives 

the visibility of one photon detector.

• In the current simulation, the entire geometry is stored in memory.
• The current library is too big to store in memory.
• The idea is to have higher resolution and cover a larger volume, both of which 

will make it impossibly large.

• The approach is to try the fast-simulation segment from our Model-
Assisted GAN (arXiv:1812.00879) to speed things up.
• Modification of a Generative Adversarial Network (GAN).

• Trained on 3M images.
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arxiv:1812.00879


Other Machine Learning Applications: 
DUNE Photon Simulation

• The procedure follows the pre-training stage of the MAGAN:
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Other Machine Learning Applications: 
DUNE Photon Simulation

Wire

Ti
m

e

SimulatedGAN output        
(8K iter.)

Training 
process

Example 1: Example 2:

SimulatedGAN output        
(8K iter.)

Training 
process
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Deep Learning in T2K
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• Tokai to Kamioka (T2K) is a long-baseline neutrino experiment in 
Japan, and is studying neutrino oscillations.

• Two separate detectors:
• Near Detector ND280: measures the number of muon neutrinos in the 

beam before any oscillations occur and characterizes the physical 
properties of the beam.

• Super Kamiokande: very large cylinder of ultra-pure water, detects muon 
neutrino after oscillating.



SFGD
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• The ND280 upgrade will introduce a new active target, the 
SuperFGD (SFGD).

• Three 2D charge deposition views (XY, XZ, YZ):

31

*Simulated 
event



SFGD 2D to 3D
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• Matching the common axis 2-to-2 in the three views XY, XZ, YZ we 
obtain the 3D information.

• Drawback: non-physical voxels appear due to lack of information 
during the 2D to 3D reconstruction algorithm, called ghost voxels.



Problem Description
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• After 3D-matching, we classify each individual 3D voxel into one 
of the following:
• Track voxel: a cube where the track has passed by.

• Crosstalk voxel: a cube with a real deposition but where any track has 
passed through it (all light comes from cube-to-cube optical crosstalk).

• Ghost voxel: a cube that does not have any real deposition and is formed 
from the 2D ambiguity when reconstructing the 3D event.

• Approach: use a supervised deep learning algorithm 
(GraphSAGE*) to perform the classification task.
• The approach based around a graph neural network (GNN) handles each 

individual voxel as a list of variables (physics information) associated to it.

• See S. Pina-Otey’s talk at the ND 280 Upgrade Meeting: 
https://indico.cern.ch/event/842568/contributions/3578802/

*W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, arXiv:1706.02216.

https://indico.cern.ch/event/842568/contributions/3578802/


Results (GraphSAGE)
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Event : simulated vs pred. (GIF image*): True 
track
voxel

True 
crosstalk
voxel

True 
ghost
voxel

Pred
track
voxel

0.970 0.022 0.000

Pred
crosstalk
voxel

0.024 0.955 0.050

Pred
ghost
voxel

0.006 0.023 0.950

1.000 1.000 1.000

*slide show to see the animated GIF



Results (GraphSAGE)
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Event: correct classified voxels.
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Moving to the Edge

• Edge computing is the practice of processing data near the edge 
of your network, where the data is being generated, instead of in 
a centralized data-processing warehouse.
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• Fermilab-Google collaboration.
• Goal: study the performance of deep learning 

tasks using different hardware: CPU, GPU, and 
Edge TPU (Tensor Processing Unit from Google).

• CERN Openlab-Micron collaboration.
• Goal: develop new deep learning models and 

use Micron’s FPGAs for fast inference online 
reconstruction for DUNE and CMS.
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Fermilab - Google Collaboration

• Specifications:

• See S. Vergani’s talk at the September 2019 DUNE Collaboration meeting:
• https://indico.fnal.gov/event/21445/session/1/contribution/95/material/slides/0.pdf
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*Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when 
operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. 

CPU GPU Edge TPU

Model Intel(R) 
Core(TM) 
i5-6500 CPU 
@ 3.20GHz 

NVIDIA 
Tesla K80 
(from 
Google 
Colab)

Coral Edge 
TPU 

TDP* 65 w (16 w 
per core) 

300 w 2 w 

Price (USD) 200 5,000 80 

• Generating the right model:



• Tested using ResNet-50 on MNIST dataset:

• Costs:  𝑐𝑜𝑠𝑡/𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑡𝑖𝑚𝑒/𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 × 𝑇𝐷𝑃 × 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐾 × 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦

Results
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CPU (Intel(R) 
Core(TM) i5-6500 
CPU @ 3.20GHz )

GPU (NVIDIA 
Tesla K80)

Coral 
Edge 
TPU

Categorical 
accuracy

97% 97% 95%

Total 
inference 
time (10k 
images)

142 s 14.7 s 356 s

Inference 
per image

14 ms 1.5 ms 35 ms

• Tested using the DUNE CVN for neutrino 
identification (50 test images):

CPU (Intel(R) 
Core(TM) i5-6500 
CPU @ 3.20GHz )

GPU (NVIDIA 
Tesla K80)

Coral 
Edge 
TPU

Categorical 
accuracy

88% 86% 88%

Total 
inference 
time (10k 
images)

22 s 1 s 5 s

Inference 
per image

431 ms 20 ms 100 ms

CPU (Intel(R) Core(TM) 
i5-6500 CPU @ 3.20GHz )

GPU (NVIDIA 
Tesla K80)

Coral Edge 
TPU

K factor 
(ResNet-50 on 
MNIST 56x56 
images)

0.21 0.45 0.07

K factor (DUNE 
500x500 
images) 

6.9 6 0.2

• GPU appears to be by far the fastest 
piece of hardware. 

• Edge TPU performs better with bigger 
images

• Edge TPU showed the smallest cost per 
inference and CPU showed the biggest 
cost per inference. 
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CERN Openlab - Micron Collaboration
• SB-852 (FPGA ready for machine learning!): 

• Xilinx Virtex Ultrascale+ UV9P.
• 64GB DDR4 SODIMM.
• High-bandwidth.
• Low-latency.

• FWDNXT:
• No need to VHDL programming.
• Any framework*.
• Any network*.

• Already ran the DUNE CVN on the FPGA.
• Same results in GPU and FPGA.

• Future plans: 
• Measure time and energy.
• Integrate the FPGA in the protoDUNE-SP DAQ.
• Test how far we can go in the data selection or even in fast online reconstruction.

• See M.J. Rodríguez’s talk at the DUNE Data Selection Working Group Meeting:
• https://indico.fnal.gov/event/21955/contribution/0/material/slides/0.pdf
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Summary

• Machine Learning, and Deep Learning in particular, provide many 
powerful mechanisms for classifying input data from many different 
fields, including high-energy physics and neutrino experiments in 
particular.

• Showed some machine learning applications in a number of worldwide 
neutrino experiments: NOvA, MicroBooNE, DUNE, [ArgoNeuT] and T2K.

• Many other neutrino experiments: Icarus, MINOS, MINERvA, IceCube, K2K, 
MiniBooNE…

• Inference via edge computing : two current projects.

• Current (and future) work focused on using more sophisticated 
techniques (e.g., sparse CNNs, Graph Neural Networks) for semantic 
segmentation of neutrino interactions.
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Backup Slides



DUNE CP-Violation Sensitivity – Dec 2018

• Same selection criteria:
• νe selection: P(νe) > 85%.

• νμ selection: P(νμ) > 50%.

• Exceeded the DUNE 
conceptual design 
report sensitivity.
• Very big milestone for 

DUNE!
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Other Machine Learning Applications: 
ProtoDUNE Track vs Shower Identification

• The approach is to use the GraphSAGE algorithm 
(arXiv:1706.02216) to label track vs shower hits in ProtoDUNE
3D images.
• Each image is internally stored as a graph.

• Graphs are much smaller than images (less size on disk).

• Neighbourhood (adjacency) can be used during the learning process.

• Model has a constant number of parameters.

• Training on graphs of different sizes.

• Inference on unseen graphs (graphs that were not seen during the training).

• Can be applied to any node of the graph.
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arxiv:1706.02216


Other Machine Learning Applications: 
ProtoDUNE Track vs Shower Identification
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• Example:

Red: track hits. Blue: shower hits.

predictedtrue



T2K SFGD Results (GraphSAGE)
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• Training on 6k events.

• Confusion matrix (from 60k events):

True track 
voxels

True 
crosstalk 

voxels

True ghost 
voxels

Pred track 
voxels

5,140,704 167,236 13,089 5,321,029

Pred
crosstalk 
voxels

286,890 5,001,600 124,886 5,413,376

Pred ghost 
voxels

16,561 140,140 1,401,551 1,558,252

5,444,155 5,308,976 1,539,526 12,292,657Observation: a 0.96% of voxels cannot 
be calssified by GraphSAGE due to not 
having any edge in the graph.



T2K SFGD Results (GraphSAGE)
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• Purity (left) vs Efficiency (right)

True track 
voxels

True 
crosstalk 

voxels

True ghost 
voxels

Pred track 
hits

0.9443 0.0315 0.0085

Pred
crosstalk 
hits

0.0527 0.9421 0.0811

Pred ghost 
hits

0.0030 0.0264 0.9104

1.0000 1.0000 1.0000

True track 
voxels

True 
crosstalk 

voxels

True 
ghost 
voxels

Pred track 
voxels

0.9661 0.0314 0.0025 1.0000

Pred
crosstalk 
voxels

0.0530 0.9239 0.0231 1.0000

Pred
ghost 
voxels

0.0106 0.0899 0.8995 1.0000



ArgoNeuT
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• Argon Neutrino Teststand (ArgoNeuT) is a joint NSF/DOE R&D 
project at Fermilab to expose a small-scale liquid argon time 
projection chamber (LArTPC) to the NuMI neutrino beam.

• Just starting using the same DUNE CVN architecture for 
distinguishing between νe and νμ interactions.

• Some differences with the DUNE version:
• Two input views instead of three.

• Images of size 240x1800 instead of 500x500.

• Very promising preliminary results.
• ~80% νμ accuracy.

• ~93% νe accuracy.


