Towards inverse design in chemistry: from prediction to deep generative models

A few months before:

Benjamin Sanchez-Lengeling

@ AISIS 2019 CDMX

Research Scientist @

Prof. Alán Aspuru-Guzik

One example with Vanillin

Material need

TIME

Vanilla Is Nearly as Expensive as Silver. That Spells Trouble for Madagascar

Can we find a substitute Vanillin that might be more sustainable?

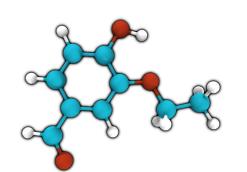
Predicting functionality

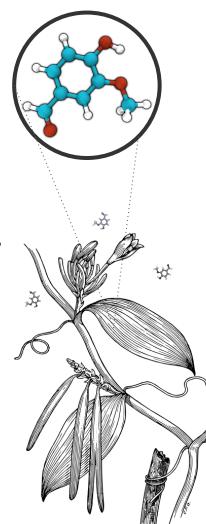
What does Vanillin smell and taste like?

"vanilla", "sweet", "creamy" and "chocolatey"

Generation based on functionality

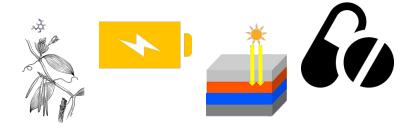
How can we find more molecules like Vanillin?





In a broader context

Material needs



Predicting functionality

odor precepts, redox potential, solar cell efficiency, binding affinities

Generation based on functionality

This is an inverse design problem

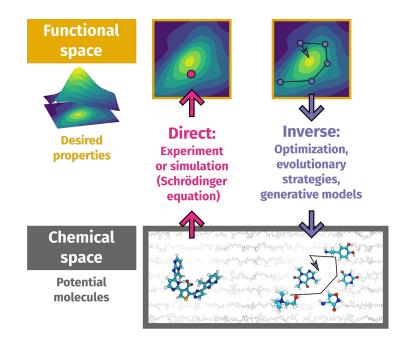
Inverse design in chemistry



Figure modified from "Inverse molecular design using machine learning: Generative models for matter engineering" Science 2018, <u>10.1126/science.aat2663</u>, **Benjamín Sanchez-Lengeling** and Alan Aspuru-Guzik

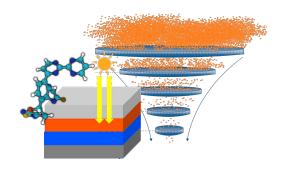
Context:

Using machine learning to build computational models for prediction and generation of organic molecules.



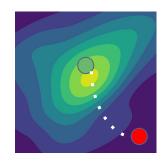
How can we find molecules according to functionality?

High throughput virtual screening (HTVS)



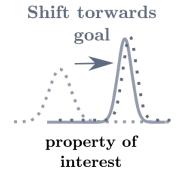
Library generation, Quantum chemistry, Gaussian Process prediction.

Explicit optimization



Variational
Autoencoders,
exploring and optimizing
in latent space

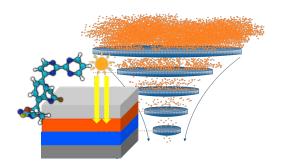
Implicit optimization



Reinforcement learning and generative adversarial networks

How can we find molecules according to functionality?

High throughput virtual screening (HTVS)

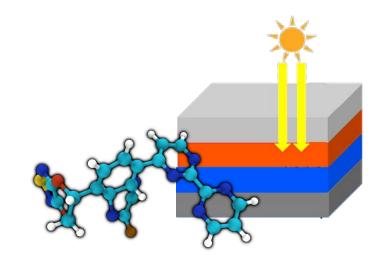


Quantum chemistry, Gaussian Process prediction and molecular structure interpretation.

Searching for molecules with a specific criteria

Inverse design for organic photovoltaics

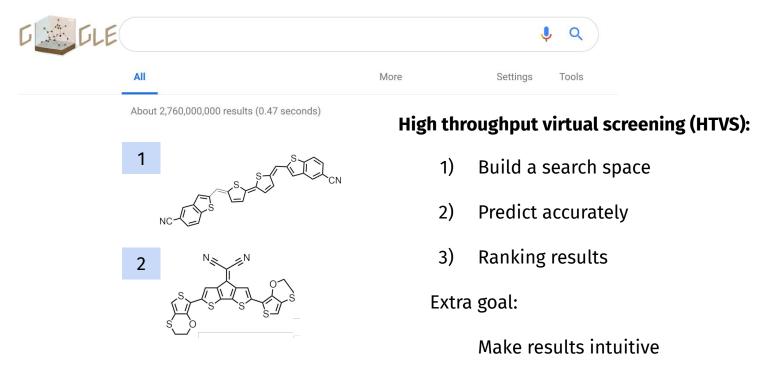
"I want organic, non-toxic and cheap molecules that will have a high efficiency in a solar cell"



The search space of molecules is huge 4070 Exploring chemical space is extremely challenging Harry was must by for the one the one of the mass of the for the one of the same of the for the same of the for the same of the for the same of the foreign it of the cooperate of and one of the prairies , 8, m nous go of \$ - 4 L. +60 > 79 foo - for - a +0 (or 10) 1, 000 od , 20 fl m ranch this of odford obtains ~10²³-10⁸⁰ "medium-size" upo va - al fly -0-----chemically sensible molecules 如人口以自然自然自然 - M 10 - a C+ H Brothy to Homoinat by the the the the to count of the follow as as the the stand of the same of the sam of the Hora for the form the first of the state of the st son brown son I some the state of the state of the son Harry was must by for the one the one of the mass of the for the one of the forther one o repet to more that the or of on the form of our the port of the property 28, whore is a form to the company of the state of the state of the state of the same of t

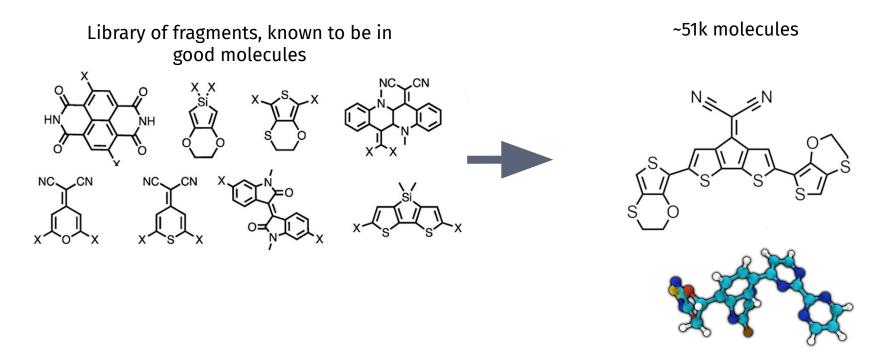
Building a molecular search engine

Going from query to top candidates



Step 1: Constraining our search space

We consider only combinations of select fragments



Step 2: Predict efficiency

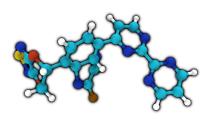
We can relate molecular properties to solar cell efficiency

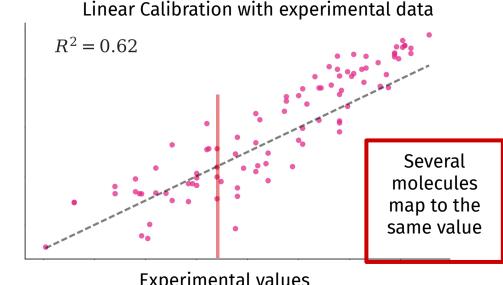


Step 2: Improving predictions

We can improve simulation by leveraging experiments

Simulation via **Quantum Chemistry** to calculate **HOMO-LUMO** gap





Experimental values

bandgap =
$$f(HOMO - LUMO gap)$$

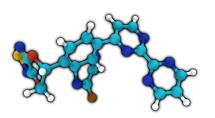
= $aHOMO - LUMO gap + b$

Step 2: Improving predictions

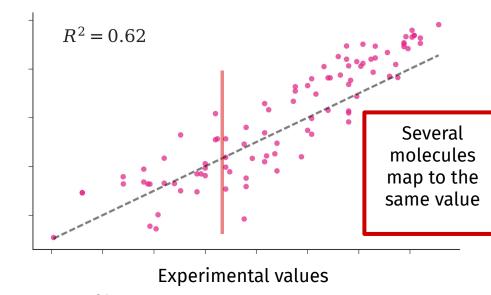
We can improve simulation by leveraging experiments

Simulated values

Simulation via
Quantum Chemistry
to calculate
HOMO-LUMO gap



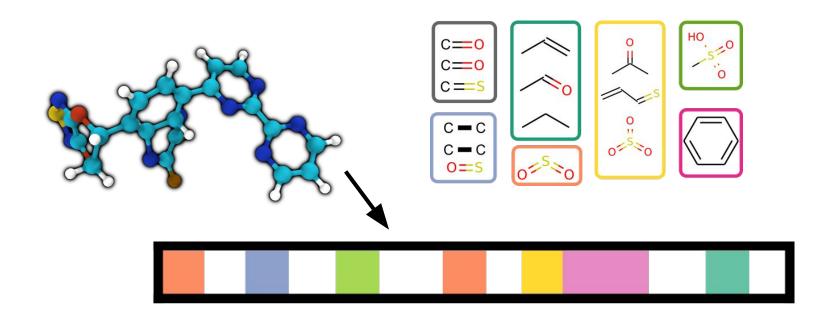
Linear Calibration with experimental data



 $bandgap = f(HOMO - LUMO \ gap,)$

How can we represent a molecular structure?

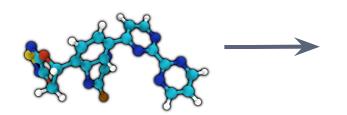
Fingerprints (FP): An effective bag-of-fragments representation



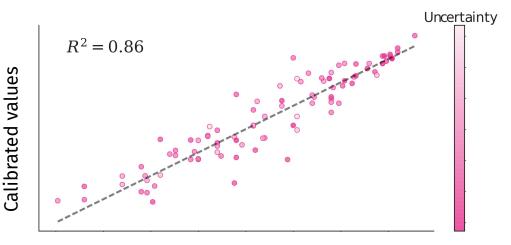
Step 2: Improving predictions

FP + GP improve prediction result on simulation baselines

Simulation via Quantum Chemistry to calculate **HOMO-LUMO gap**



Gaussian Process Regression with experimental data



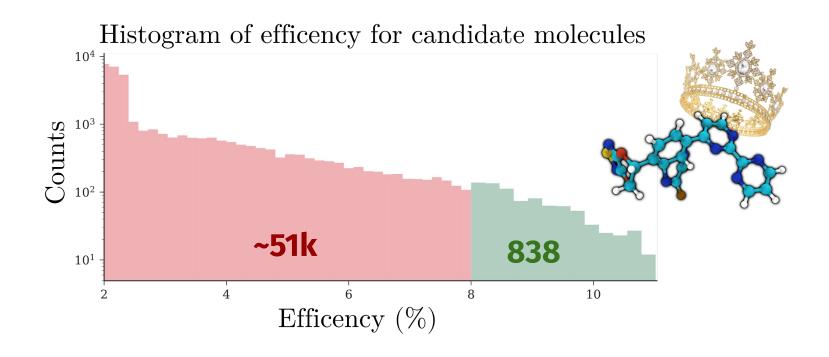
Experimental values

 ${\rm bandgap} = GP(HOMO-LUMO\ gap+b,fp)$

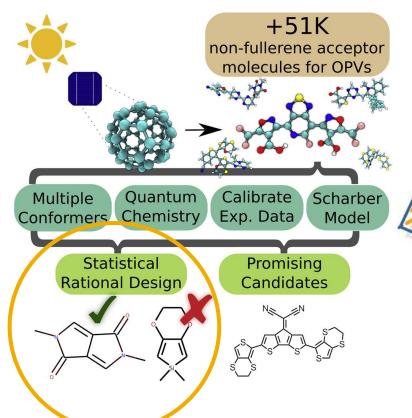
(coming in Nov'19 to a github repo near you)

Step 3: Rank molecules

We can can pick our top candidates based on performance



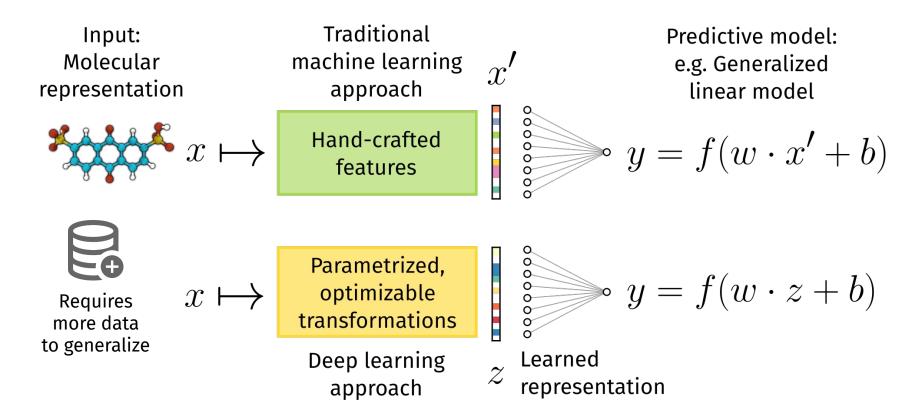
At the end of the screening procedure



Collaboration with Christoph Brabec group, has led to two other works

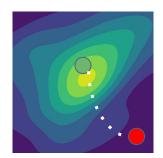
Machine learning (ML) and deep learning (DL)

Learning representations of our data, optimized to a task



How can we find molecules according to functionality?

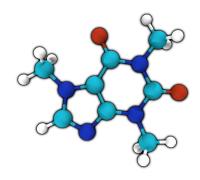
Explicit optimization



Variational
Autoencoders,
exploring and optimizing
in latent space

Molecular data

Most data is unlabeled, and few public experimental sets exists



Caffeine

CN1C=NC2=C1C(=O)N(C(=O)N2C)C SMILES is a discrete sequence encoding the molecular graph

- Unlabeled datasets: upto 166B (GBD-17)
 - ZINC ~ 980M molecules
- Experimental datasets: upto 437k (PBCBA)
- Simulated data sets:
 - Semi-empirical upto 91M, most are less than 1M
 - High quality quantum chemistry: upto 134k (qm9)

Deep generative models

Neural networks optimized for a data generation task. The field of natural language processing has introduced many of these methods for discrete sequences.

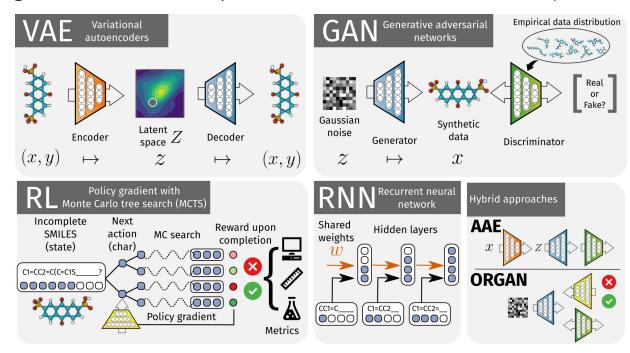
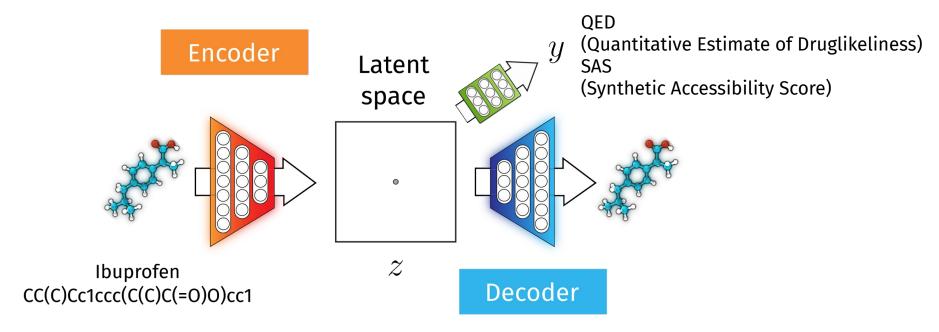


Figure modified from "Inverse molecular design using machine learning: Generative models for matter engineering" Science 2018, <u>10.1126/science.aat2663</u>, **Benjamín Sanchez-Lengeling** and Alan Aspuru-Guzik

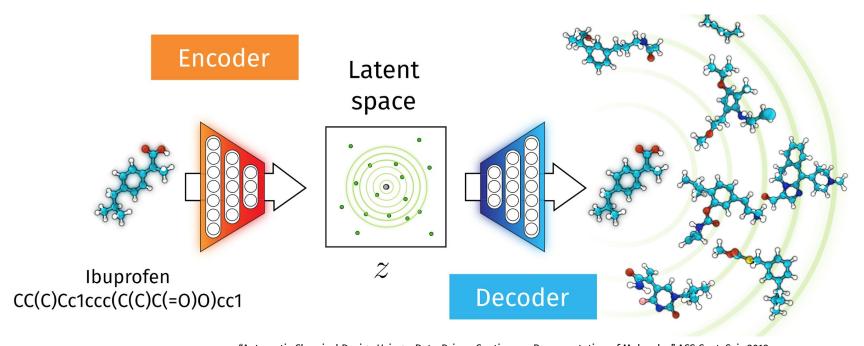
Variational Autoencoders (VAE)

Learning a continuous and reversible representation for molecules



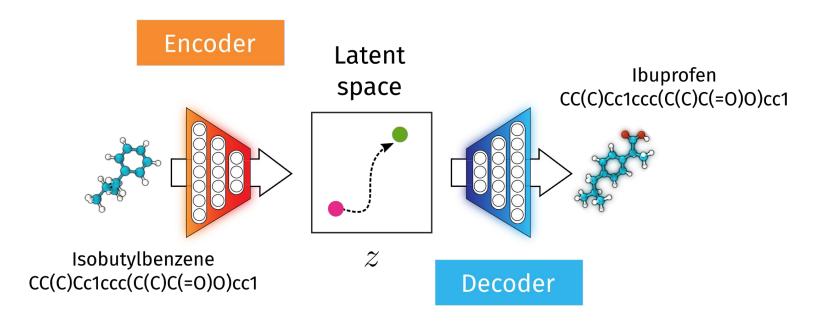
Variational Autoencoders (VAE): Sampling

Decoded latent vectors become molecules



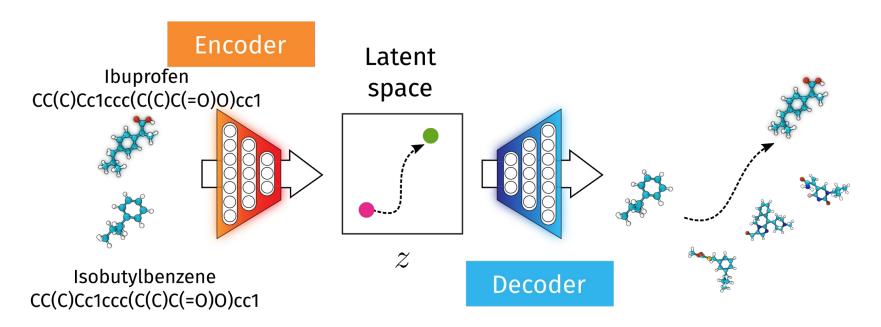
Variational Autoencoders (VAE): Optimizing

Optimizing in the latent space



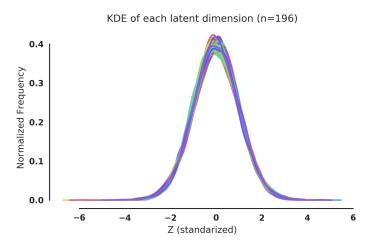
Variational Autoencoders (VAE): Interpolating

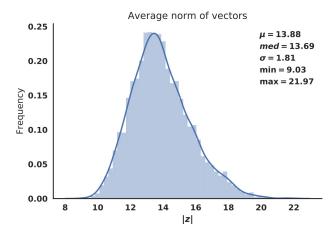
Connecting two latent vectors by smooth paths

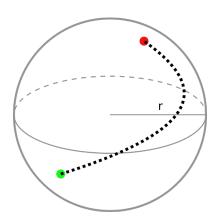


Geometry of latent space

High dimensional spaces are not intuitive, our latent space is like a hyper annulus

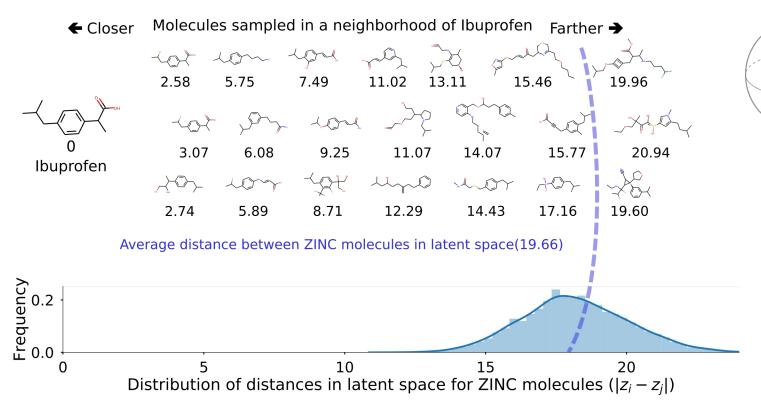






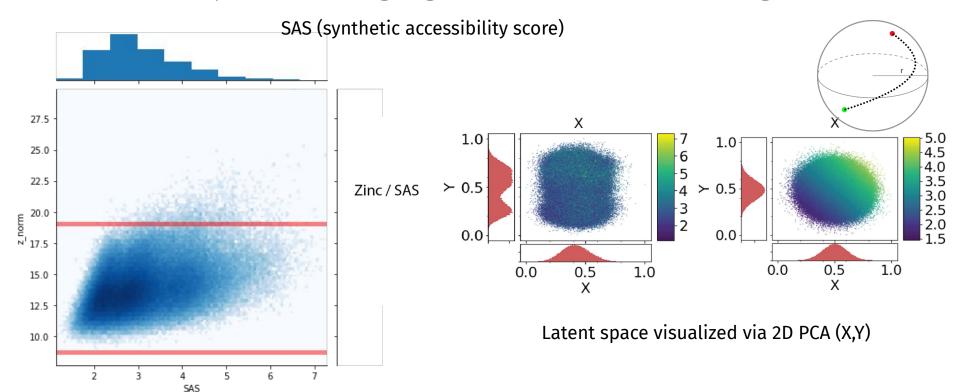
Local structure in the manifold of latent space

In a neighborhood of a molecule we find small local changes



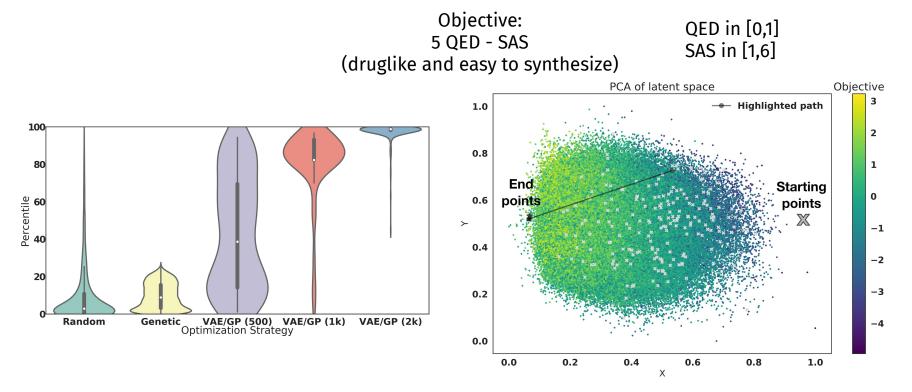
Global structure in the manifold of latent space

If we wish to optimize, having organized structure is advantageous



Optimization in latent space

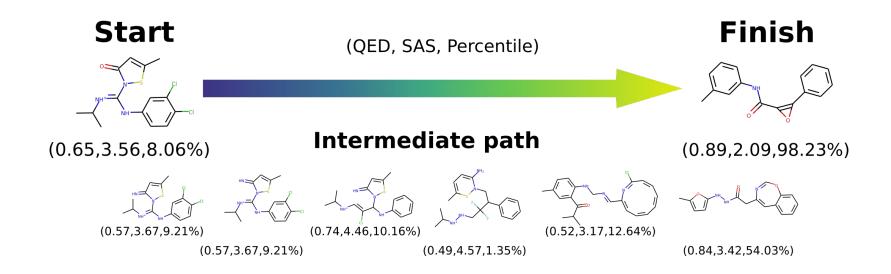
Constrained bayesian optimization and local search at the end



Optimization in latent space

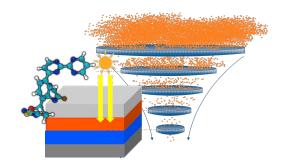
Tracing the path between start and end points

Objective: 5 QED - SAS (druglike and easy to synthesize)



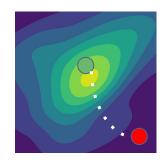
How can we find molecules according to functionality?

High throughput virtual screening (HTVS)



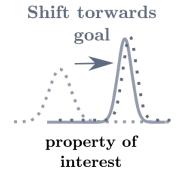
Quantum chemistry, Gaussian Process prediction and molecular structure interpretation.

Explicit optimization



Variational
Autoencoders,
exploring and optimizing
in latent space

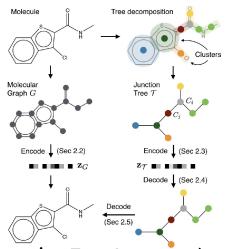
Implicit optimization



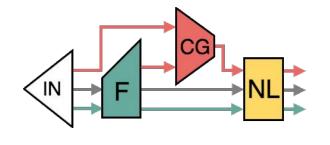
Reinforcement learning and generative adversarial networks

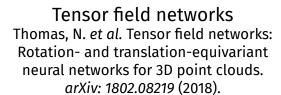
Looking to the future: representations and algorithms

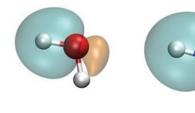
Representations that capture hierarchical structure and symmetries of molecules



Junction Tree Autoencoder
Jin, W., Barzilay, R. & Jaakkola, T. Junction
Tree Variational Autoencoder for
Molecular Graph Generation. arXiv:
1802.04364. (2018).







Incorporating more electronic structure (orbitals, wavefunctions)

Looking to the future: Larger, high quality datasets

Automation might pave the way for high quality datasets

- Unlabeled datasets: upto 166B (GBD-17)
 - ZINC ~ 980M molecules
- Experimental datasets: upto 437k (PBCBA)
- Simulated data sets:
 - Semi-empirical upto 91M, most are less than 1M
 - High quality quantum chemistry: upto 134k (qm9)

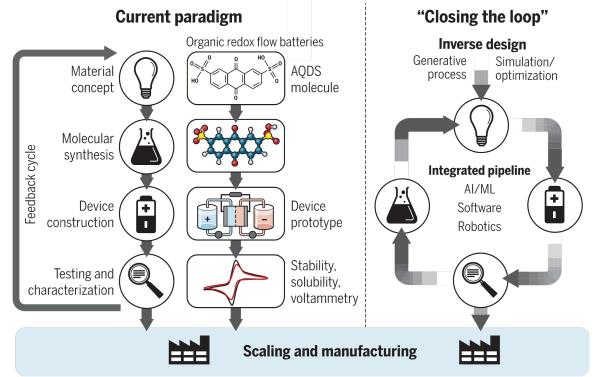
One challenge is on generalizability:

We can accurately predict electronic properties for small molecules (qm9). *

Remains to be seen for the rest of molecular space.

Looking to the future: closing the loop

Inverse design is one component within a broader material challenge.



Machine Learning for chemistry of smell

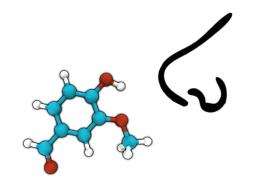
Nosebrain @ Google Brain

Alex Wiltschko

Jennifer Wei

Brian Lee

Carey



More new this thursday at https://ai.googleblog.com/

- Large high quality dataset
- Fast and accurate prediction (GNN)
- Interpretability tools (graph attribution and embeddings)
- Easy to test (just take a whiff)
- Generation seems plausible (small organic molecules)

Many thanks!

Alán Aspuru-Guzik

Adrian Jinich
Jennifer Wei
Daniel Tabor
Dennis Sheberla
Aniket Zinzuwadia
Loic Roch
Florian Hase
Luis Martin
Jhonathan Romero

Aniket ZInzuwadia Rafa Bombarelli Dmitri Rappaport Tim Hirzel Steven Lopez Semion Saikin Teresa Tamayo Gabriel Guimaraes Carlos Ouiteral

A2G2

Alex Wiltschko Dario Perea Christoph Brabec group

.hristoph Brabec grou Insilico Medicine Afshan Mohajeri

Outside A2G2:

And many others!

Thanks to AISIS '19

Also check out RIIAA v3 in 2020!

International Meeting on Artificial Intelligence and its Applications

riiaa.org

Any questions?

(and thanks for hearing me!)

Also email:

beangoben@gmail.com

bmsanchez@google.com