

Deep Learning for Cosmic-Ray Observatories

Jonas Glombitza, Martin Erdmann, Alexander Temme

III. Physikalisches Institut A, RWTH Aachen

Federal Ministry of Education and Research

Astroparticle Physics

- Observation of particles with astronomical origin
- Search for their sources
 - Understand physics of astronomical objects
- > Measure all cosmic messenger
 - > Photons, neutrinos, nuclei
- > Distant sources, high particle energies
 - Experiment feature very large detector volumes

Cosmic Rays

- Charged nuclei from astronomical origins
 - 10 orders of magnitude energy range

Ultra-high energy cosmic rays (UHECRs)

• Energies > 10¹⁸ eV

- manageable deflection by magnetic fields
 - Search for extra-galactic origins

Cosmic-Ray induced Air Showers

- Cosmic rays interact with Earth's atmosphere
 - > Induce extensive particle cascade
- Particle shower reach size of several km² at Earth's surface
- Particle mass determines shower structure
 - Low mass, deep penetration \rightarrow late maximum
 - Heavy mass, early maximum
- Many different detection techniques

Xmax

Shower maximum Correlates with primary mass

The Pierre Auger Observatory

- World largest cosmic-cay observatory
- Placed in Argentina
- Measure high-energetic particles
 - Energy > 10¹⁷ eV
- Study composition of cosmic rays
- Search for cosmic-ray origins

Hybrid measurements of UHECRs

- 27 fluorescence telescopes at 4 sites
 - 15% duty cycle
- 1660 water-Cherenkov stations
 - 3000 km² array, ~100% duty cycle

Air-Shower reconstruction using AixNet

- Shower maximum contains charge information
 - Directly observed by fluorescence telescopes
 - Challenging to measure with surface detector
- Use Deep Learning to reconstruct Xmax
 - Use data of surface detector only
 - > Improve statistics (much higher duty cycle)

Need precise reconstruction!

Air-Shower Detection

Signal-Trace Processing

- Signal trace contains information of secondary particles
 - Different particles induce characteristic signal shapes
 - Arrival-time of particles contains information about shower development
- Use recurrent network (LSTM cells) to extract trace features
 - Use same network for all stations

8

Air-Shower Footprint

- Particle footprint induces pattern of triggered stations at Earth's surface
- Clustering in time
 - Reconstruction of arrival direction
- Clustering in space
 - Shower core of footprint
 - Energy of primary particle

X Image \rightarrow Cartesian | SD \rightarrow Hexagonal

Hexagonal Convolutions

Measured footprint differs from imageCartesian vs. Hexagonal grid

III. Physikalisches Institut A

Use symmetry of hexagonal grid

- Find hexagonal clusters
- Use of translational invariance
 - similar patterns at different grid positions
- Use of rotational invariance
- similar patterns for showers from different arrival directions

Hoogeboom, Peters, Cohen, Welling ArXiv/1803.02108

Deep Learning for Cosmic-Ray Observatories, AISIS 2019 Glombitza | RWTH Aachen | 10/22/19

AixNet

- \sim 1.5 million parameters
- Implemented in Keras / TensorFlow
- Training on Nvidia 1080 GTX ~ 1-2 days

Erdmann, Glombitza, Walz https://doi.org/10.1016/j.astropartphys.2017.10.006

11

	Simulated shower data		Epos LHC	
	# Showers		800,000	
	Training		700,000	
	Validation		10,000	
	Test		90,000	
	Energy		18.0 - 20.2	2
	Spectrum		E-1	
	Composition		25% proto 25% heliur 25% oxyge 25% iron	n n en
	Zenith		0 – 65°	
entrunication terms ber to be Ber Rear typene took				bg(=1) 54, (max=07.4.2), (mm)=52.64
	Raw Data	"AixNe	t"	Reconstruction

Reconstruction of the Shower Geometry

Axis reconstruction

12

- Resolution (68% quantile) ~ 0.7°
- Deep Learning for Cosmic-Ray Observatories, AISIS 2019 Glombitza | RWTH Aachen | 10/22/19

- Unbiased core reconstruction
 - No composition & azimuth bias

III. Physikalisches Institut A

Resolution ~ 50m

Reconstruction of Cosmic-Ray Energy

III. Physikalisches

Deep Learning for Cosmic-Ray Observatories, AISIS 2019 Glombitza | RWTH Aachen | 10/22/19

Reconstruction of Shower Maximum

14

Successful shower maximum reconstruction

- Shows expected separation of elements
- Resolution < 30 g/cm²
- Absolute bias of ~ 5 g/cm²
- Significant improvement to previous methods

Generalization Capacities on Data

Inductive bias

- Models are trained using physics simulations
- Trained models are applied to data
 - Reconstruction bias

Inductive Bias

16

- Observation of muon excess in measured air-shower data
- Can lead to reconstruction bias

Deep Learning for Cosmic-Ray Observatories, AISIS 2019 Glombitza | RWTH Aachen | 10/22/19

200

800

t / ns

1000

1200

Adversarial Framework for Simulation Refinement

Erdmann, Glombitza, Geiger, Schmidt: https://doi.org/10.1007/s41781-018-0008-x

Simulation Refinement

• Mitigate data / simulation mismatches \rightarrow reduce systematic reconstruction bias

18

- Train *refiner* network to refine simulated data
- Feedback given by adversarial *critic* network, rating the refined simulation quality
- Refiner uses feedback to improve performance
- Constrain refinement process using residual units

Improved Performance on Data

Trained on original simulation evaluate on data

Trained on **refined simulation** evaluated on **data**

Network shows improved performance when trained on refined simulations

Summary

- Pierre Auger Observatory measures ultra-high energy cosmic rays
- Application of Deep Learning for air-shower reconstruction
- Reconstruct cosmic-ray properties
 - Model exploits symmetry of measured data
 - Precise extraction of mass-sensitive information
- Upcoming: Auger Prime
 - Detector upgrade will improve performance
- Inductive bias: models are trained on simulations but applied on data
- Promising results on refinement of simulations

SPONSORED BY THE

MIGEI

Deep Learning for Cosmic-Ray Observatories

Martin Erdmann, Jonas Glombitza, Alexander Temme

III. Physikalisches Institut A, RWTH Aachen

AISIS 2019, Mexico-City

glombitza@phyik.rwth-aachen.de

Visualization of Deep Networks

• Open black box

- Understand reasoning of network
 - Get insights of the reconstruction

What influences reconstruction at most? Important pixels have large gradients

- Calculate gradient of reconstruction ${\cal R}$ with respect to input pixels

Missing $p\bar{i}xel \rightarrow raised$ reconstruction score of '9'

23 Deep Learning for Cosmic-Ray Observatories, AISIS 2019 Glombitza | RWTH Aachen | 10/22/19

Saliency Maps

Idea:

reconstruction in signal trace

First attempt: simplified toy simulation

- 1. Muons arrive first, then
- 2. Electromagnetic shower particles

- Central stations focus on muons
- Neighbor stations focus on electromagnetic component

500

muons

t/ns

Erdmann, Glombitza, Walz, 10.1016/j.astropartphys.2017.10.006 Niklas Eich, Erdmann, Glombitza, RWTH Aachen 2018

1500

Visualization of Deep Networks

500

0

1500

t/ns

electromagnetic

Supervised trained Autoencoder Network encodes only relevant information

Encoder

1000

25 (time samples)

- Remove noise of radio signals from cosmic ray induced air showers
- Signal energy and frequency spectrum approx. conserved

SNR: 3.32

Trace

III. Physikalisches Institut A

Erdmann, Schlüter, Smida - https://arxiv.org/pdf/1901.04079.pdf

25 Deep Learning for Cosmic-Ray Observatories, AISIS 2019 Glombitza | RWTH Aachen | 10/22/19

Denoising of Air Shower Radio Signals

Generative Adversarial Networks

- III. Physikalisches Institut A
- Use Generative Adversarial Networks (GANs) for simulations
- Generator network generates new events
 - Discriminator rates quality of generated events
 - Discriminator feedback is used to train generator
- Conditioning of generator to physics parameters
- Speed up physics simulations $\sim 10^3 10^5$
- First application shows promising results

Erdmann, Geiger, Glombitza, Schmidt - 10.1007/s41781-018-0008-x

Measured Data

- Widely distributed sensors / telescopes
- Most experiments feature Hexagonal or Cartesian sensor grids
 - 2 and 3 dimensional structured footprints / signal patterns
- Many sensors provide time trace of signals
- Structured multi-dimensional data
- Motivates convolutional and recurrent architectures

Main Part: DenseNet Architecture

Densely Connected Convolutions (2016)

Facebook AI Research, Cornell University, Tsinghua University

- · Connections with all upper "feature layers"
 - Combination of high level and low level features
 - Enforces feature reusage

29

