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Variational Autoencoders - Background

DecoderEncoder𝑋 X′

Loss Function      𝑋 − 𝑋′ + 𝜆 ∙ 𝐾𝐿 𝑁 𝜇 𝑋 , Σ 𝑋 ԡ𝑁 0, 𝐼

𝜇 𝑋

Σ 𝑋

Sample 𝑧 from 𝑁(0, 𝐼)

∗

+

Variational Autoencoder – Autonecoder with a “twist”



Variational Autoencoders - Background

Generative Model

Decoder X′

Loss Function      𝑋 − 𝑋′ + 𝜆 ∙ 𝐾𝐿 𝑁 𝜇 𝑋 , Σ 𝑋 ԡ𝑁 0, 𝐼

Sample 𝑧 from 𝑁(0, 𝐼)
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Variational Autoencoders - Background

X: training dataset

z: latent variable (w. known prob. distribution, z ~ N(0,I))

X

z

N

θ

𝑃 𝑋 = න𝑃(𝑋|𝑧; θ)𝑃 𝑧 𝑑𝑧

Two problems:
1. How to define the latent variables (what information from X they represent)?
2. How to solve (1)?  Sampling over every possible z´s is not practical!

(1)



Variational Autoencoders - Background

1. How to define the latent variables (what information from X they represent)?

• Assuming a powerful (high-capacity) mapping function θ, z can be drawn from a 
simple distribution (N(0,I))  𝑃 𝑧 = 𝑁(𝑧|0, 𝐼)

• 𝑓(𝑧; θ) is a deep multi-layer neural network which will map z to the
corresponding X.



Variational Autoencoders - Background

2. How solve P(X)

Difficult in practice to infer 𝑃 𝑋 𝑧 without sampling 
a large number of 𝑧 values.

To learn a new function 𝑄, that takes 𝑋 and gives a distribution over 𝑧 that 
are likely to produce 𝑋. 

𝑃(𝑋) = 𝐸𝑧~𝑃 𝑧 𝑃(𝑋|𝑧)

𝐸𝑧~𝑄 𝑧 𝑃(𝑋|𝑧) More practical

𝐸𝑧~𝑄 𝑧 log 𝑃 𝑋|𝑧 = 𝐸𝑧~𝑄 𝑧 log 𝑃 𝑧|𝑋 + log 𝑃 𝑋 − log 𝑃 𝑧

Bayes’ rule



Variational Autoencoders - Background

2. How solve P(X)

𝐸𝑧~𝑄 𝑧 log 𝑃 𝑋|𝑧 = 𝐸𝑧~𝑄 𝑧 log 𝑃 𝑧|𝑋 + log 𝑃 𝑋 − log 𝑃 𝑧

log 𝑃 𝑋 − 𝐸𝑧~𝑄 𝑧 log𝑄 𝑧|𝑋 − log 𝑃 𝑧|𝑋 =

Rearranging and subtracting 𝐸𝑧~𝑄 𝑧 log 𝑄 𝑧|𝑋 on both sides…

𝐸𝑧~𝑄 𝑧 log 𝑃 𝑋|𝑧 − 𝐸𝑧~𝑄 𝑧 log𝑄 𝑧|𝑋 − log 𝑃 𝑧

Definition of KL divergence 𝐸𝑧~𝑄 log 𝑎 − log 𝑏 = 𝐾𝐿[𝑎||𝑏]

log 𝑃 𝑋 − 𝐾𝐿 𝑄 𝑧|𝑋 ԡ𝑃 𝑧|𝑋 = 𝐸𝑧~𝑄 𝑧 log 𝑃 𝑋|𝑧 − 𝐾𝐿 𝑄 𝑧|𝑋 ԡ𝑃 𝑧



Variational Autoencoders - Background

2. How solve P(X)

log 𝑃 𝑋 − 𝐾𝐿 𝑄 𝑧|𝑋 ԡ𝑃 𝑧|𝑋 = 𝐸𝑧~𝑄 𝑧 log 𝑃 𝑋|𝑧 − 𝐾𝐿 𝑄 𝑧|𝑋 ԡ𝑃 𝑧

Lower bound (KL > 0)

Reconstruction error (Decoder)

𝑄 𝑧|𝑋 Gaussian 𝒩(𝜇, Σ)

KL-div. of two Gaussians  closed form

DecoderEncoder Autoencoder Architecture𝑋 𝑋′𝑧



Variational Autoencoders - Background

Reparameterization trick

DecoderEncoder𝑋 X′

Loss Function      𝑋 − 𝑋′ + 𝜆 ∙ 𝐾𝐿 𝑁 𝜇 𝑋 , Σ 𝑋 ԡ𝑁 0, 𝐼

𝜇 𝑋

Σ 𝑋

Sample 𝑧 from 𝑁(0, 𝐼)

∗

+



Variational Autoencoders - Background

Generative Model

Decoder X′

Loss Function      𝑋 − 𝑋′ + 𝜆 ∙ 𝐾𝐿 𝑁 𝜇 𝑋 , Σ 𝑋 ԡ𝑁 0, 𝐼

Sample 𝑧 from 𝑁(0, 𝐼)



Conditional Variational Autoencoders - Background

𝑃 𝑋 → 𝑃 𝑋|𝑌

log 𝑃 𝑋|𝑌 − 𝐾𝐿 𝑄 𝑧|𝑋, 𝑌 ԡ𝑃 𝑧|𝑋, 𝑌 =

= 𝐸𝑧~𝑄 𝑧 log 𝑃 𝑋|𝑌, 𝑧 − 𝐾𝐿 𝑄 𝑧|𝑋, 𝑌 ԡ𝑃 𝑧|𝑌

Lower bound (KL > 0)

Reconstruction error (Decoder)

𝑄 𝑧|𝑋, 𝑌 Gaussian 𝒩(𝜇, Σ)

KL-div. of two Gaussians  closed form



Conditional Variational Autoencoders - Background

Reparameterization trick

DecoderEncoder𝑋 X′

Loss Function      𝑋 − 𝑋′ + 𝜆 ∙ 𝐾𝐿 𝑁 𝜇 𝑋, 𝑌 , Σ 𝑋, 𝑌 ԡ𝑁 0, 𝐼

𝜇 𝑋, 𝑌

Σ 𝑋, 𝑌

Sample 𝑧 from 𝑁(0, 𝐼)

∗

+

𝑌



Conditional Variational Autoencoders - Background

Reparameterization trick

Decoder X′

Loss Function      𝑋 − 𝑋′ + 𝜆 ∙ 𝐾𝐿 𝑁 𝜇 𝑋, 𝑌 , Σ 𝑋, 𝑌 ԡ𝑁 0, 𝐼

Sample 𝑧 from 𝑁(0, 𝐼)

𝑌
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3D Anatomy Reconstruction from 2DUS

sagittal coronal axial (transvent.)

𝑋:𝑃(𝑋|𝑌1,2,3) 3D skull  and where 𝑌1,2,3 = 𝑌1, 𝑌2, 𝑌3

𝑌1

𝑌2

𝑌3



Sagittal Coronal Transventricular TransthalamicTranscerebellar

2D Biometrics. 

Standard planes manually
acquired.

Manual meassurements.

Subjectivity

Low reproducibility

Prone to errors.



3D Biometry for Fetal Skull 
Assessment 

Dyson et al. “Three-dimensional ultrasound in the 
evaluation of fetal anomalies” Ultrasound Obstet. 
Gynecol. 2000, 16.

Towards 3D Fetal Analysis 

3D US has the potential to 
mitigate these effects, 
provinding a more realistic, 
objective, and reproducible 
analysis tool.

Basgul et al. “Evaluation of fetal anomalies by two 
and three-dimensional ultrasound” Gynaecol
Perinatol 2007, 16(2).

Lee et al. “A review of three-dimensional 
ultrasound applications in fetal growth restriction” 
Journal of Medical Ultrasound 2012, 20.

Goncalves et al. “Three- and 4-dimensional 
ultrasound in obstetric practice: Does it help?” J 
Ultrasound Med. 2005, 24

Goncalves et al. “What does 2-dimensional imaging 
add to 3- and 4-dimensional obstetric 
ultrasonography?” J Ultrasound Med 2006, 25. 









3D vs 2D

J. Matthew et al.  “Novel 3D-based metric to assess the 
fetal skull: A Pilot Study. BMUS 2017.

normal

dolichocephalic

dolichocephalic

BPD

OFD



2D 3D

Automatic Tools for 
Segmentation and Analysis

Cerrolaza et al. “Deep learning with ultrasound 
physics for fetal skull segmentation” ISBI 2018

Analysis and Visualization

Namburete et al. “Fully-automated alignment of 
3D fetal brain ultrasound to a canonical 
reference space using multi-task learning” Med. 
Image Anal. 2018

Automatic Detection of 
Anatomical Structures and  
Standard Planes in 3DUS

Li et al. “Standard plane detection in 3D fetal
ultrasound using an iterative transformation network” 
MICCAI 2018

Huang et al. “VP-Nets: Efficient automatic localization 
of key brain structures in 3D fetal neurosonography” 
Med. Image Anal. 2018,47

Limited Experience

?

Need of large international/ 
multi-ethnic studies to create 
new reference charts for 
3D biometry

Lack of Large Dataset

Towards 3D Fetal Analysis 



Coronal

Sagittal

Axial (Transvent.)

Not all the standard views are always routinely acquired Hierarchical CVAE

Always acquired.
Classic 2D biometrics.

Frequently.
Face / head shape.

Sometimes.
Normally acquired as part of a 
dedicated scan.
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Conditional Variational Autoencoders for 3D Fetal Anatomy Reconstruction

3D Anatomy Reconstruction from 2DUS



Coronal Sagittal Axial (transvent.)

Experiments

Data:  72 cases (IBD approved); avg. gest. age 24.7 (20 to 36 weeks)
58 training / 14 testing (3-folds)

Preprocessing: Resized to 96 x 96 x 96 vox. (96 x 96 pixels); isotropic 0.50 mm 

3D skull manually segmentation supervised by expert radiologist.

Random anisotropic scaling, rotations (± 10°) and translations (± 7 pix.).

Adam (l.r. = 0.001, β1=0.9, β2=0.995); 1000 epochs.



Latent space 

Training progress…

Skull reconstruction



DC: Dice coeff.  HD: Hausdorff dist. (mm).    RVD: Relative volume diff.

[4] Girdhar et al. “Learning a Predictable and Generative Vector Representation for Objects”. In ECCV (6) 2016

axial sagittal coronal

axial sagittal

axial

DC HD RVD

CVAE 0.91 ± 0.02 4.33 ± 1.71 0.03 ± 0.12

HCVAE 0.91 ± 0.04 4.12 ± 1.98 0.03 ± 0.14

TL-NET [4] 0.89 ± 0.03 4.79 ± 1.28 0.09 ± 0.17

GAN 0.89 ± 0.04 5.16 ± 1.5 0.03 ± 0.16

DC HD RVD

CVAE 0.86 ± 0.05 5.43 ± 2.78 0.03 ± 0.30

HCVAE 0.89 ± 0.05 4.81 ± 2.44 0.03 ± 0.20

TL-NET [4] 0.89 ± 0.05 5.32 ± 1.99 0.09 ± 0.19

GAN 0.86 ± 0.07 5.93 ± 2.66 0.05 ± 0.30

DC HD RVD

CVAE 0.83 ± 0.06 6.23 ± 2.88 0.09 ± 0.33

HCVAE 0.86 ± 0.05 5.04 ± 2.82 0.04 ± 0.21

TL-NET [4] 0.85 ± 0.04 7.04 ± 2.34 0.17 ± 0.20

GAN 0.83 ± 0.08 8.04 ± 3.06 0.17 ± 0.37



axial axial + sagittal axial + sagittal + coronal

Prediction Uncertainty in HCVAE
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Cardiac remodeling

Explainable Cardiac Remodeling Assessment

• refers to any change in size and shape of the heart
• strong predictor of survival in cardiac pathologies.

Cardiovascular magnetic resonance (CMR) has become the gold-standard 
for high-resolution imaging of the cardiac structure.

Biological Ground Truth Left Ventricular (LV) short-axis cine MR acquisition Clinical Indexes          



Disease of the heart muscle which manifests clinically with unexplained left 
ventricular (LV) hypertrophy (thickening).

Healthy HCM Healthy HCM 

Conventional clinical indexes are insensitive to regional and asymmetrical
remodeling.

Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM)



Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

PCA shape components

Easy to visualize.

Just summarizes data variability 




they do not necessarily encode anatomical features 
that can differentiate between classes.

Machine Learning approaches

Powerful feature extraction.

Lack interpretability





VAE

Learns a set of latent variables z that:

1. can differentiate clinical conditions y.

2. and whose anatomical effect can be 
visualized.



Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

End-diastolic (ED) and end-systolic (ES) phases of cardiac cine MR images of healthy (HVols) and HCM
subjects were automatically segmented1.

3D segmentations quality was improved by a multi-atlas-aided upsampling scheme and ED and ES frames
were registered to a common template.

Exemplar 2D LV short-axis views and corresponding LV segmentation at ED and ES.

IMPERIAL COLLEGE DATASET:

TRAINING: 537 (276 HVols, 261 HCMs)

VALIDATION: 150 (75 HVols, 75 HCMs) 

TESTING: 200 (200 HVols, 200 HCMs) 

ACDC MICCAI 2017 DATASET: 

TESTING: 40 (20 HVols, 20 HCMs) 

1Bai,  W. et al. A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects. MedIA 2015 Dec;26(1):133-45.



Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors
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Encoder Decoder

Prediction

Kernel size Stride # filters

Convolutional layer

Fully connected layer
y0 y1

VAE Implementation

Biffi,  C. et al. Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling. MICCAI 2018.



Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

VAE Implementation

Biffi,  C. et al. Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling. MICCAI 2018.
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Encoder Decoder

Prediction

Kernel size Stride # filters

Convolutional layer

Fully connected layer
y0 y1

Classification Cross-Entropy

Dice Score

N (0,1)

Latent Space Navigation: t = iteration number, λ=0.1



Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

VAE Implementation

TESTING  – IMPERIAL COLLEGE DATASET: 200 (100 HVols, 100 HCMs) – 100% accuracy
– ACDC MICCAI 2017: 40 (20 HVols, 20 HCMs) – 90% accuracy

LE = Laplacian Eigenmaps



Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

Can we do even better?

• Latent space navigation is subject-specific, i.e. no population-based inference.

• Latent space can only visualized with an additional dimensionality reduction technique.

Given a population of N shapes X, we aim at developing a data-
driven method that learns a conditional hierarchy of latent 
variables {zN, … z1,z0} where:

1. zN can differentiate between clinical conditions y and is very 
low-dimensional.

2. {zN, … z1,z0} anatomical effect can be visualized.



Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

Ladder VAE

d2

x

z0

z1

z2

x

d0

d1

Novelty: Sharing of information between encoder and decoder.

Sønderby, C.K. et al., Ladder variational autoencoders. Advances in neural information processing systems. NIPS 2016. 



Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

Ladder VAE



Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

TESTING  – IMPERIAL COLLEGE DATASET: 200 (100 HVols, 100 HCMs) – 100% accuracy

– ACDC MICCAI 2017: 40 (20 HVols, 20 HCMs) – 90% accuracy
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Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

Ladder VAE
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Explainable Cardiac Remodeling Assessment

Hypertrophic Cardiomyopathy (HCM) – Shape Descriptors

Ladder VAE

healthy HCM
WT [mm]

0 5 10

Mean healthy and HCM shapes generated by sampling from z2 clusters.
Wall Thickness (WT) values are plotted at each vertex.

HCM shapes has ~15% greater mass and ~6% bigger cavity volume. 



Conclusions

• Potential of deep generative networks for the 3D reconstruction of the fetal skull from 
non-registered 2DUS standard planes  New generation of 3D fetal biometry

• VAEs is a versatile, and flexible family of networks with a solid foundation in probability 
theory. 

• VAEs are NOT just a particular subgroup of autoencoders with a Bayesian “twist”. 

• Their intrinsic duality as dimensionality reduction network and generative models 
make them an interesting approach for solving different problems in medical imaging.  

• New approach as visualization and classification technique for cardiac pathologies.
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