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Overview

● Introduction
○ HPC and AI in HEP
○ Fast simulation
○ 3DGAN

● Distributed Training
○ Distributed training initial optimization
○ Scaling up to 256 nodes
○ Inference time

● Summary
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● Deeper models
○ Deep Neural Networks often have millions of 

parameters 

● Big data
○ More complex problems require more data

● Faster
○ Training speedup
○ Inference speedup

● Parallelizable processes
○ Parallelism can be implemented at different levels

HPC and AI

Main driving forces………...
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● All venues of science are benefitting from AI for problems 
where..

○ Underlying processes are difficult to model
○ Require high computational sources
○ Time consuming 
○ Noisy data

● High Energy Physics
○ Applications

■ Reconstruction and Analysis
■ Trigger optimization
■ Simulation

● AI crucial for HEP experiments
○ HPC hardware

■ Maximize performance
■ Fast time-to-model

High Energy Physics 

AI applications in HEP
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● Understand how detector design affects 
measurements and physics

○ Correct for inefficiencies, inaccuracies, unknowns
○ Compare theory models to data

● Complex physics and geometry modeling
○ >50% of Worldwide LHC Computing Grid (WLCG) 

power today
○ Increase by 100x by 2025!

HEP Simulation

Essential for data analysis & detector design
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● Proposed linear particle accelerator 

● Calorimeter data set developed for ML applications 

● Events as selected cells around the barycenter of particle showers simulated using 

Geant4 

● Primary particle energy 10-500 GeV (electrons) 

○ Event → 25 x 25 x 25 image → 15, 625 cells

■ 200,000 events  

● Detector response as 3D images

○ Highly segmented (pixelized)

■ critical for particle identification and energy determination

○ Highly sparse

■ only ~20% cells with energy deposition

○ Large dynamic range 

■ > seven orders of magnitude

Data set
Compact Linear Collider CLIC

http://clicdp.web.cern.ch/http://cds.cern.ch/record/2254048
Ecal

http://clicdp.web.cern.ch/
http://cds.cern.ch/record/2254048
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● Simultaneously train two networks that compete and cooperate with 
each other

○ Discriminator
○ Generator

3DGAN

Generative Adversarial Network

DiscriminatorLatent 

noise
Generator

Condition

x
Image

Data Image
Real/fake

Condition

constraints

A generalized view of 3DGAN 
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3DGAN Architecture

Evaluating the 
performance by 
agreement to  
labels and Physics 
related constraints

~1 M parameters
Total model Size 3.8MB
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Physics Simulation with 3DGAN

Comparison to Monte Carlo (>300 plots)

Energy Deposition 

along x, y, z axis for 

200 Gev
Sampling Fraction (Ecal sum/Ep)

Energy deposition in transverse direction for 

50, 100, 300 and 400 GeVY moment (width)
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● Training time ~ 1hour/epoch on GeForce GTX 1080

● 30 to 50 epochs for complete training taking days

● Reducing training time is essential for:

○ Hyper parameter scans

○ Detector design studies

● Distributed training with Horovod

○ Data parallelism

○ Synchronous update

Distributed training

3DGAN
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Distributed Training initial optimization

TACC Stampede 2 (2018)

● Stampede 2 cluster
○ Dual socket Intel® Xeon® 8160
○ 2x 24 cores per node, 192 GB 

RAM
○ Intel® Omni-Path Architecture

● Software
○ Tensorflow 1.9 (Intel optimized)
○ Keras 2.13 
○ Horovod 0.13.4

● Single Node Optimization:
○ Replace Eigen with MKL-DNN
○ Optimize number of convolution 

filters

● Parallelize:
○ 4 workers/node

IXPUG 2018



12

● Intel Endeavour cluster:

○ NASA Advanced 

Supercomputing Division (NAD)

○ Named after spaceship 

Endeavour

○ Xeon® 8268 Cascade Lake

○ 2 Sockets /node

○ 24 cores per socket

○ Intel® Omni-Path Architecture

● Software:

○ Tensorflow 1.14 (Intel 

optimized)

○ MKL-DNN 0.18

○ Horovod 0.16.4

○ Keras 2.2.4

Scaling up to 256 nodes

Xeon 8268 (2019)

2019

● For 128 2CPU Xeon Nodes
○ 2018: < 2.5 Mins/Epoch Xeon 8160 (Skylake CPUs)
○ 2019: < 1 Min/Epoch Xeon 8268 (Cascade Lake CPUs) 

– 2.5X
■ Time to Train to Accuracy: 14.4 minutes on 256 

Nodes 

2.8X Improvement with 
Xeon(R) 8268 & optimization
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Sampling Fraction

Physics Performance

2019
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Inference time

Tensorflow 1.9

Baseline (TF 1.4)

TF 1.9 (optimized)

Method Platform Time/Shower

(ms)

Speedup

Classical 

Monte Carlo 

(Geant4)

2S Intel 

Xeon 

Platinum

8180

17000 1.0

3DGAN

(BS=128)

1-stream

16 2500

Method Platform Time/Shower

(ms)

Speedup

Classical Monte 

Carlo (Geant4)

2S Intel 

Xeon 

Platinum

8180

17000 1.0

3DGAN

(BS=128)

1-stream

2S Intel 

Xeon 

Platinum

8160

1.25 13600

3DGAN

(BS=128)

2-stream

0.93 18279

3DGAN

(BS=128)

4-stream

0.85 20000

TF 

1.14(WIP)
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● A more realistic scenario where image is generated condition on both:
○ Primary particle energy
○ Incident angle

● Variable angle data (electrons)
○ Event → 51 x 51 x 25 image → 65, 025 cells

■ 400,000 events from 2 to 500 GeV

● Event size is more than 4x larger
● Thus training data size is also larger
● Network is deeper (~1.2 M parameters)

More complex 3DGAN

Larger images with incident angle 60° to 120°

G4

GAN
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Physics performance

● Sampling Fraction
● Hits
● Shower Shapes:

○ Energy deposited 
along x, y and z axis

● Measured Angle

For primary particle energy 100-200 GeV and angle in bins around 62, 90 and 118 
Degrees 62 Degrees 90 Degrees 118 Degrees
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● Training for 2-500 GeV spectrum
○ Starting from pretrained weights (trained for 100-200 GeV)

Transfer Learning

Shower shapes in the longitudinal direction for Different Primary energies

100 GeV 200 GeV

300 GeV 400 GeV

Sampling Fraction

Primary energy regression
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Generalisation

Different geometries, read-out patterns, energy 
scales

Tuning the right architecture cannot be done by hand

Full parameter scan is resource/time consuming.

Test  different optimisation approaches:
Sequential Model-Based Optimization

Optimize intial architecture candidate, defining a finite set of states to 
explore

Reinforcement Learning
Network accuracy is the reward function. Architecture or hyper-
parameter modification are actions

Evolutionary Algorithms 
Can allow simultaneous weights training and architecture optimisation

Training and architecture hyper-parameters optimisation
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● GA can train Neural Network
● Global instead of local minima

● Complex and indirect cost functions are 

possible

● Highly Scalable

● Currently used in hyper-parameter scans 
○ Architectures are encoded as a chromosome

○ Weights are trained by gradient descent for 

evaluation of each individual

○ Time and resource intensive

Evolutionary Approach

Genetic Algorithm to train and optimize neural networks simultaneously

Exit after n 
generations
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● Network Size: 

○ Trainable parameters in millions for 3DGAN model

● Large Computing resources?  

● Architecture Optimization: 

○ Flexible and stable

● Adversarial Training: 

○ Simultaneous training of two networks

● Inexact solution: 

○ A hybrid approach can incorporate SGD as a 

callback 

Challenges

GA for GAN
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● Reduced complexity:
○ Simplified discriminator regression on 2D images

○ Weight update 

● Implement evolutionary algorithm
○ Testing batch training with GA

■ Smaller batches resulted in better training

○ Random updates vs. random weights
■ Random weights allow faster convergence 

○ 6-8 optimal number of offsprings

○ No Bias

○ Comparison to RMSprop (lr=0.01) 
■ Faster convergence

■ Lower accuracy

● Update weights and architecture at the same time is faster than GA 
based hyper-parameter scan

● Improve accuracy by adding gradient descent steps

Initial Implementation

GA with pytorch
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● Distributed training and HPC optimization is critical
○ Enables architecture optimization and generalization
○ Increase the size of the problems we can solve

● Results on 3DGAN optimisation are very promising
○ Reduced training time by 8x on single node
○ Linear scaling brings down training time to < 0.5 min/epoch on 

256 modes of 2CPU Xeon 8268
○ Inference time is x20000 faster than Monte Carlo approach

○ Implement GA based combined architecture and 
training search Estimate performance and needs in 
terms of computing resources

• Several techniques can be explored (indirect weight encoding and 
asynchronous update)

• Increase complexity (network, dataset, …)

Summary & Plans

NN training will be a new workflow for large HEP experiments
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Thank you

Questions ?
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● Optimise filter sizes
○ Conv Filters: Multiple of 16 (MKL-DNN 

optimizations)
● Dataset: 200000 electrons

○ Training Samples: 180000 & Validation: 20000
● Batch Size: 8/Worker, # Workers/Node=4/Node 

(Mapped to NUMA domains)
● TF tuning: inter_op: 2 & Intra_op: 11 (Xeon® 8160 is 

24C/CPU); AVX512 –FMA support
● Learning Rate: 0.001, Optimizer: RMSprop
● Warmup Epochs: 5 (Facebook Methodology), 

Training Epochs: 25

Architecture, Dataset & Runtime Options



25

● Compute Nodes: 
○ 2 sockets Intel® Xeon® Platinum 8160 CPU with 24 cores each @ 2.10GHz for 

a total of 48 cores per node, 2 Threads per core, L1d 32K; L1i cache 32K; L2 
cache 1024K; L3 cache 33792K, 96 GB of DDR4, Intel® Omni-Path Host Fabric 
Interface, dual-rail.  Software: Intel® MPI Library 2017 Update 4Intel® MPI 
Library 2019 Technical Preview OFI 1.5.0PSM2 w/ Multi-EP, 10 Gbit Ethernet, 
200 GB local SSD, Red Hat* Enterprise Linux 6.7.

● TensorFlow 1.6: 
○ Built & Installed from source: https://www.tensorflow.org/install/install_sources

● Model: 
○ CERN 3D GANS from https://github.com/sara-nl/3Dgan/tree/tf

● Dataset: 
○ CERN 3D GANS from https://github.com/sara-nl/3Dgan/tree/tf

● Performance (256 Nodes):
○ OMP_NUM_THREADS=24 HOROVOD_FUSION_THRESHOLD=134217728 

export I_MPI_FABRICS=tmi, export I_MPI_TMI_PROVIDER=psm2 mpirun -np 
512 -ppn 2 python resnet_main.py --train_batch_size 8 --num_intra_threads 24 -
-num_inter_threads 2 --mkl=True  --data_dir=/path/to/gans_script.py --
kmp_blocktime 1

○ https://portal.tacc.utexas.edu/user-guides/stampede2

Stampede2/TACC

Configuration Details

https://www.tensorflow.org/install/install_sources
https://github.com/sara-nl/3Dgan/tree/tf
https://github.com/sara-nl/3Dgan/tree/tf
https://portal.tacc.utexas.edu/user-guides/stampede2
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Training time


