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The Large Hadron Collider
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The Large Hadron Collider

The LHC is a huge and extremely complex machine:

e 26.659km tunnel, 50m-150m underground

e Accelerates particles up to 7TeV

e 9593 magnets, most cooled to 1.9K

e ~ 1.5 billion collisions per second

o Total cost about 6.5 billion CHF

e Total energy usage about 230MW

e Extremely sensitive: moon tides, day/night tariff, tgv, ...

= j Operating it is far from trivial !
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Machine Learning at the LHC

Different Collaborations

e Concerning machine operation:
e Collimator alignment
e Recognition of faulty monitors
e Correction of beam optics variables

o Concerning analysis of measurements and simulations:
e Anomaly detection in tracking simulations
e Extrapolation of tracking simulations
e Modelling beam lifetime by operational settings
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Context

LHC Protection System

e The LHC uses a system of 100 collimators for protection

e These must be aligned around the two beams with a
precision better than 50m

e Alignments are performed yearly before start of operation

Applications with Machine Learning

e Alignment is tedious, time-consuming, and repetitive
e ldeal situation for machine learning
= supervised learning
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Setup

Beam Loss Monitors (BLMs)

Collimator i ﬂ
e record losses as they touch the beam l
e experts monitor these losses to r—

deduce collimator alignment i
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Setup

e data sample taken when collimator stops moving
e spike when threshold in BLM is passed
e goal is to distinguish real spikes (beam is hit) from noise
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Spike Classification

Spike Parameterisation

5 parameters:
jaw position (1), spike height (1), and decay fit (3)
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Spike Classification

Approach
e Six ML models for spike classification were compared

Logistic Regression, Neural Network, SVM, Decision Tree, Random Forest,
Gradient Boost
e data split into: 6446 samples for training, 1778 for testing
e enforce: no false positives
o false negatives are OK (because alignment will continue)
¢ no retraining needed unless hardware changes
e Analysis of beam crosstalk allows parallel alignments
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Results

e ML can replace human operators for alignments
e More than three times faster!

e ML-based alignment will be default from now on




Outline

© Optics measurements and corrections
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Analysis of Beam Optics

e Beam Position Monitors (BPMs) measure excited beam
e Harmonic analysis of BPM signal gives optics functions
e These typically differ from design optics

e Unphysical values in optics stem from faulty BPMs

4

Applications with Machine Learning

o ldentify and remove faulty BPMs from data
= anomaly detection by unsupervised learning

o Calculate optimal machine settings that minimise
difference between measured and design optics
= supervised learning

\

AISIS 2019 ML @ LHC



Beam position [mm]

Beam position [mm]

Anomaly Detection
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Approach

o Past measurements show that ~ 10% of BPMs are faulty
e Non-physical spikes in optics are artefact of bad BPMs
= Use ML to identify faulty BPMs from harmonic analysis

= To avoid spikes in optics functions
o enforce: no false negatives (don’t keep a bad BPM)
o false positives are OK (we have >1000 BPMs...)

e Four ML algorithms are compared:

K-means, DBSCAN, Local Outlier Factor, Isolation Forest
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e Very good recognition of faulty BPMs
e Now integrated by default into optics measurements at

LHC
e Successfully used during commissioning and machine
developments
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e [-function calculated from harmonic analysis of BPMs
e (-beating is ratio of measured over designed S-function
e Corrections in the LHC are based on response matrix
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Machine Learning (work in progress)

ML to reconstruct magnet errors everywhere at once
= supervised learning
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Approach

Phase advance

Ideal optics measured at
1046 BPMs from
+ ideal optics
Correlation! ‘

190 errors in quad circuits
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Approach

e Three ML algorithms are compared:

Convolutional Neural Network, Linear Regression, Ridge
o CNN (Keras with TensorFlow backend):
e Used for image processing
e Spatially dependent features: phase advance between
neighbouring BPMs
e Different deep layers look for different features
e Very simple model is applied: no parameter tuning, no
optimisation
= Lots of improvements are possible
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Prbeating®  peak  rms o All methods demonstrate
Uncorrected 32+10 11+3

Response Matrix ~ 11£5 3+2 similar performance
CNN 11+2 3.2+0.5 . q

Ridge regression  10+2 2.9+0.8 o Linear RegreSSIOn ML
Linear regression ~ 9+2 2.6+1.7 achieves best correction
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Context

Dynamic Aperture

e A tool to estimate beam quality

e It is the volume of the smallest connected region in phase
space that remains stable for a certain amount of time

e Its evolution over time can be estimated with scaling laws
e DA can describe beam losses and luminosity evolution

| A\

Applications with Machine Learning
e Anomaly detection = unsupervised learning
e DA extrapolation = supervised learning

AISIS 2019 ML @ LHC
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e 60 random realisations (‘seeds’) in LHC simulations

Anomaly Detection

e Sometimes one seed gives very bad DA for one angle
(because close to resonance, internal cancellations, ...)

Machine Learning
e Use ML to flag these outliers
— let human decide whether or not to remove
e Investigate anomaly dependence on angles or seeds

| \

A
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Anomaly Detection

Approach

Points are sometimes clustered in several groups

= DBSCAN to recognise clusters
(scaled over population, min 3 points in a cluster)
points not in cluster are possible outliers
= LOF to quantify outlier strength
= Cut off at minimum threshold, and outliers can only
exist as minima or maxima (not in between)

AISIS 2019
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Anomaly Detection
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Anomaly Detection
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Anomaly Detection

Results
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Anomaly Detection

o Outlier detection per angle works as expected
But human verification is indeed needed!

— to decide whether or not to remove a particular seed
(depending on behaviour of nearby angles)

e ~ 10x more outliers at large angles and seeds 1 and 52
= further investigation needed

AISIS 2019
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Curve Fitting and Extrapolation

e DA simulations are very CPU-intensive

= only 10° — 10° turns (~ 1 minute) are achievable
o Realistic timescales are much larger (~ 10 hours)

= simulations need to be extrapolated
e Scaling laws exist to describe evolution over time

<

Machine Learning (work in progress)

e Use ML to improve fitting to scaling laws
e Recurrent Neural Network to make prediction estimates

AISIS 2019 ML @ LHC
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Curve Fitting and Extrapolation

Approach

e Existing scaling laws work well to describe the data
e But not that much to predict (sensitivity of fit parameters)
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Curve Fitting and Extrapolation

Trying with a Neural Network

e Brute-force approach: not including any info from scaling

o Time series analysis (LSTM with Keras)
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Curve Fitting and Extrapolation

Trying with a Neural Network

e Results aren’t very impressive; deeper investigation is
needed

¢ Alternative: use a Neural Network to find optimal weights
to fit to existing scaling laws
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Beam Lifetime

o Is the time 7 such that intensity I(7) = 11,

o Real-life counterpart of DA, describing beam quality

o Strongly influenced by operational settings

e Extraction from simulation is difficult (coherent instabilities)

Applications with Machine Learning
o Avoid time- and CPU-consuming tracking simulations
o Model that directly relates lifetime to machine settings
e Ample data available, focus on 2017 and 2018
= supervised learning

| A

A
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Beam Lifetime Model =i ePrFL
Approach
e Input:
e tunes (H/V, B1/B2) e emittances (H/V, B1/B2)

sextupole strengths (B1/B2) e octupole strength (B1/B2)
e elapsed time timestamps
e number of bunches (B1/B2) » ...

e Output:
e beam lifetimes (B1/B2, from slope of BCTs)

e Data from Run 2

AISIS 2019
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Internal Correlations

Lifetimes depend on
tunes from both beams!

= Need to de-correlate
before continuing
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Robustness of Model mase EPEL

hnology

e Use dedicated MD run:
e to decorrelate tunes between two beams
e to extend tune range further than only current operational
settings
¢ This allows us to test robustness of model:
e does the tunes correlation matter?
e behaviour of other beam parameters when lifetime is Iarge?)
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Robustness of Model mase EPEL

Technology

Machine Development

o random walk over tunes

o different random walk for
beam 2 at the same moment

o do this for different
operational settings
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Robustness of Model mase EPEL

Technology

Machine Developm
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Beam Lifetime Model mew EPEL
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Beam Lifetime Model mew EPEL
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Multi-Parameter Optimisation miwe EPEL

Optimal Settings

e Close to resonances: highest lifetime

e However this also gives emittance blow-up

e Latter is unwanted as it decreases luminosity

= Multi-objective optimisation problem
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Conclusions
e Collimator Alignment:
e ML is now the standard tool for collimator alignments
e Optics Measurements and Correction:
e ML is now the standard tool to find faulty BPMs
e Reconstruct true errors of single quadrupoles instead of
corrector circuits: better results than using Response Matrix
e Linear Regression is sufficient to correct linear optics errors
e Dynamic Aperture:
e Anomaly detection is very efficient
o Beam Lifetime:
e First steps are made towards a model that predicts lifetime
in function of the operational parameters

AISIS 2019 ML @ LHC




Outlook

o Collimator Alignment:
e Advanced crosstalk analysis — more alignments in parallel
e Optics Correction:
e Larger dataset — more general models
o Increase complexity of optics — more complex models
» Add more sources of errors and non-linearities
e Reinforcement Learning
e Dynamic Aperture:
e Anomaly detection by centralised supervised learning
e Improve prediction algorithms using high-precision data
e Use supervised learning on fitting weights
o Beam Lifetime:
e Larger dataset and more operational parameters
— more general model

AISIS 2019 ML @ LHC
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