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The Large Hadron Collider

(figure shamelessly stolen from Maciej’s talk on Monday)
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The Large Hadron Collider

The LHC is a huge and extremely complex machine:
26.659km tunnel, 50m-150m underground
Accelerates particles up to 7TeV
9593 magnets, most cooled to 1.9K
∼ 1.5 billion collisions per second
Total cost about 6.5 billion CHF
Total energy usage about 230MW
Extremely sensitive: moon tides, day/night tariff, tgv, . . .

⇒ ¡ Operating it is far from trivial !
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Operating the LHC
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Operating the LHC
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Machine Learning at the LHC

Different Collaborations

Concerning machine operation:
Collimator alignment
Recognition of faulty monitors
Correction of beam optics variables

Concerning analysis of measurements and simulations:
Anomaly detection in tracking simulations
Extrapolation of tracking simulations
Modelling beam lifetime by operational settings
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Context
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Context

LHC Protection System

The LHC uses a system of 100 collimators for protection
These must be aligned around the two beams with a
precision better than 50µm
Alignments are performed yearly before start of operation

Applications with Machine Learning

Alignment is tedious, time-consuming, and repetitive
Ideal situation for machine learning
⇒ supervised learning
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Setup

Beam Loss Monitors (BLMs)

record losses as they touch the beam
experts monitor these losses to
deduce collimator alignment
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Setup

Spikes

data sample taken when collimator stops moving
spike when threshold in BLM is passed
goal is to distinguish real spikes (beam is hit) from noise
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Spike Classification
Spike Parameterisation

5 parameters:
jaw position (1), spike height (1), and decay fit (3)
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Spike Classification

Approach

Six ML models for spike classification were compared
Logistic Regression, Neural Network, SVM, Decision Tree, Random Forest,

Gradient Boost

data split into: 6446 samples for training, 1778 for testing
enforce: no false positives
false negatives are OK (because alignment will continue)
no retraining needed unless hardware changes
Analysis of beam crosstalk allows parallel alignments
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Results

ML
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Results

Results

ML can replace human operators for alignments
More than three times faster!

ML-based alignment will be default from now on
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Context
Analysis of Beam Optics

Beam Position Monitors (BPMs) measure excited beam
Harmonic analysis of BPM signal gives optics functions
These typically differ from design optics

Unphysical values in optics stem from faulty BPMs

Applications with Machine Learning

Identify and remove faulty BPMs from data
⇒ anomaly detection by unsupervised learning

Calculate optimal machine settings that minimise
difference between measured and design optics
⇒ supervised learning
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Anomaly Detection
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Anomaly Detection

Approach

Past measurements show that ∼ 10% of BPMs are faulty
Non-physical spikes in optics are artefact of bad BPMs
⇒ Use ML to identify faulty BPMs from harmonic analysis
⇒ To avoid spikes in optics functions

enforce: no false negatives (don’t keep a bad BPM)
false positives are OK (we have >1000 BPMs. . . )

Four ML algorithms are compared:
K-means, DBSCAN, Local Outlier Factor, Isolation Forest
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Anomaly Detection

Results
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Anomaly Detection

Results

Very good recognition of faulty BPMs
Now integrated by default into optics measurements at
LHC
Successfully used during commissioning and machine
developments
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Correction of Beta-Beating
β-function calculated from harmonic analysis of BPMs
β-beating is ratio of measured over designed β-function
Corrections in the LHC are based on response matrix

Machine Learning (work in progress)

ML to reconstruct magnet errors everywhere at once
⇒ supervised learning
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Correction of Beta-Beating

Approach
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Correction of Beta-Beating

Approach

Three ML algorithms are compared:
Convolutional Neural Network, Linear Regression, Ridge

CNN (Keras with TensorFlow backend):
Used for image processing
Spatially dependent features: phase advance between
neighbouring BPMs
Different deep layers look for different features

Very simple model is applied: no parameter tuning, no
optimisation
⇒ Lots of improvements are possible
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Correction of Beta-Beating

Results
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Correction of Beta-Beating

Results

All methods demonstrate
similar performance
Linear Regression ML
achieves best correction
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Context

Dynamic Aperture

A tool to estimate beam quality
It is the volume of the smallest connected region in phase
space that remains stable for a certain amount of time
Its evolution over time can be estimated with scaling laws
DA can describe beam losses and luminosity evolution

Applications with Machine Learning

Anomaly detection
DA extrapolation

⇒ unsupervised learning

⇒ supervised learning
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Anomaly Detection

Setup

60 random realisations (‘seeds’) in LHC simulations
Sometimes one seed gives very bad DA for one angle
(because close to resonance, internal cancellations, . . . )

Machine Learning

Use ML to flag these outliers
→ let human decide whether or not to remove

Investigate anomaly dependence on angles or seeds
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Anomaly Detection

Approach

Points are sometimes clustered in several groups
⇒ DBSCAN to recognise clusters

(scaled over population, min 3 points in a cluster)
points not in cluster are possible outliers

⇒ LOF to quantify outlier strength
⇒ Cut off at minimum threshold, and outliers can only

exist as minima or maxima (not in between)
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Anomaly Detection

Results
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Anomaly Detection

Results
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Anomaly Detection

Results
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Anomaly Detection

Results
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Anomaly Detection

Results

Outlier detection per angle works as expected
But human verification is indeed needed!
→ to decide whether or not to remove a particular seed

(depending on behaviour of nearby angles)

≈ 10× more outliers at large angles and seeds 1 and 52
⇒ further investigation needed
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Curve Fitting and Extrapolation

Setup

DA simulations are very CPU-intensive
⇒ only 105 − 106 turns (∼1 minute) are achievable

Realistic timescales are much larger (∼10 hours)
⇒ simulations need to be extrapolated

Scaling laws exist to describe evolution over time

Machine Learning (work in progress)

Use ML to improve fitting to scaling laws
Recurrent Neural Network to make prediction estimates
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Curve Fitting and Extrapolation
Approach

Existing scaling laws work well to describe the data
But not that much to predict (sensitivity of fit parameters)
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Curve Fitting and Extrapolation
Trying with a Neural Network

Brute-force approach: not including any info from scaling
Time series analysis (LSTM with Keras)
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Curve Fitting and Extrapolation

Trying with a Neural Network

Results aren’t very impressive; deeper investigation is
needed
Alternative: use a Neural Network to find optimal weights
to fit to existing scaling laws
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Context
Beam Lifetime

Is the time τ such that intensity I(τ) = 1
eI0

Real-life counterpart of DA, describing beam quality
Strongly influenced by operational settings
Extraction from simulation is difficult (coherent instabilities)

Applications with Machine Learning

Avoid time- and CPU-consuming tracking simulations
Model that directly relates lifetime to machine settings
Ample data available, focus on 2017 and 2018
⇒ supervised learning
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Beam Lifetime Model

Approach

Input:
tunes (H/V, B1/B2)
sextupole strengths (B1/B2)
elapsed time
number of bunches (B1/B2)

emittances (H/V, B1/B2)
octupole strength (B1/B2)
timestamps
. . .

Output:
beam lifetimes (B1/B2, from slope of BCTs)

Data from Run 2
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Internal Correlations

Correlations

Spearman correlation
coefficient
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Internal Correlations

Correlations

Lifetimes depend on
tunes from both beams!

⇒ Need to de-correlate
before continuing
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Robustness of Model

Machine Development

Use dedicated MD run:
to decorrelate tunes between two beams
to extend tune range further than only current operational
settings

This allows us to test robustness of model:
does the tunes correlation matter?
behaviour of other beam parameters when lifetime is large?

AISIS 2019 ML @ LHC 24/28



Robustness of Model

Machine Development

random walk over tunes
different random walk for
beam 2 at the same moment
do this for different
operational settings
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Robustness of Model

Machine Development

No more correlations
between beams!

However, emittance
becomes important
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Beam Lifetime Model

Result: Prediction of Lifetime (with LightGBM algorithm)

Fill 7056
Beam 2
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Beam Lifetime Model

Result: Prediction of Lifetime (with LightGBM algorithm)

Fill 7056
Beam 2

Good agreement!
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Multi-Parameter Optimisation

Optimal Settings

Close to resonances: highest lifetime
However this also gives emittance blow-up
Latter is unwanted as it decreases luminosity

⇒ Multi-objective optimisation problem
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Multi-Parameter Optimisation

Optimal Settings
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Multi-Parameter Optimisation

Optimal Settings

Beam 1
recommended
settings:
qx = 0.279

qy = 0.286

Beam 2 similar
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Conclusions

Collimator Alignment:
ML is now the standard tool for collimator alignments

Optics Measurements and Correction:
ML is now the standard tool to find faulty BPMs
Reconstruct true errors of single quadrupoles instead of
corrector circuits: better results than using Response Matrix
Linear Regression is sufficient to correct linear optics errors

Dynamic Aperture:
Anomaly detection is very efficient

Beam Lifetime:
First steps are made towards a model that predicts lifetime
in function of the operational parameters
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Outlook

Collimator Alignment:
Advanced crosstalk analysis→ more alignments in parallel

Optics Correction:
Larger dataset→ more general models
Increase complexity of optics→ more complex models

I Add more sources of errors and non-linearities
Reinforcement Learning

Dynamic Aperture:
Anomaly detection by centralised supervised learning
Improve prediction algorithms using high-precision data
Use supervised learning on fitting weights

Beam Lifetime:
Larger dataset and more operational parameters
→ more general model

AISIS 2019 ML @ LHC 28/28




	Introduction
	Collimator alignment
	Optics measurements and corrections
	Dynamic aperture studies
	Beam lifetime optimisation
	Conclusions and Outlook

