
Version 10.5

Introduction

John Apostolakis (CERN)
Geant4 Beginners Course

Most of the slides are obtained or adapted from slides of M.Asai (SLAC)

Outline

• What is Particle Transport Monte Carlo ?

• Geant4 and its components

• The kernel of Geant4 (the ‘skeleton’)

– A tour of the Geant4 Kernel classes: from a step to a run

• Hands-on Part 1: A first run

• How to get Geant4 to do what you want (simulation your setup)

– How to ‘keep’ the information you need

Introduction and Geant4 Kernel - J.Apostolakis

What is particle transport?

• It is a way to estimate the effects of radiation in a particular region.
Given
– a radiation source or beam,
– a model of the geometry of a setup or detector
– a volume or region in which to measure

• The simplest type of task is to estimate
– Energy deposition in volume (e- displaced) and its variance
– Dose / volume - weighted by its biological effect
– Fluxes, e.g. of neutrons (=> nuclear reactions) in a particular

region
and similar ‘first order’ observable (with estimated errors.)

• It can also estimate complicated observables:
– distributions of energy deposition, dose, .. Including width
– correlations between observables or derived quantities - e.g.

coincidence of gammas (PET)

Introduction and Geant4 Kernel - J.Apostolakis

Courtesy of GATE

Courtesy of R. Reid,
Vanderbilt Univ.

Version 10.5

Monte Carlo Particle Transport

Slides adapted from “Introduction to detector simulation” by M.
Asai & D. Wright (SLAC)

http://indico.lucas.lu.se/event/932/session/0/contribution/2/material/slides/0.pdf

Monte Carlo method : definition

• The Monte Carlo method is a stochastic method for numerical integration.

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 5

Monte Carlo methods for radiation transport

• Fermi (1930): random method to calculate the properties of the newly discovered
neutron

• Manhattan project (40’s): simulations during the initial development of thermonuclear
weapons. von Neumann and Ulam coined the term “Monte Carlo”

• Metropolis (1948) first actual Monte Carlo calculations using a computer (ENIAC)
• Berger (1963): first complete coupled electron-photon transport code that became

known as ETRAN
• Exponential growth since the 1980’s with the availability of digital computers

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 6

Simplest case – decay in flight (1)

• Suppose an unstable particle of life time t has initial momentum p
(à velocity v).
– Distance to travel before decay : d = t v

• The decay time t is a random value with probability density function

• the probability that the particle decays at time t is given by the cumulative distribution
function F which is itself is a random variable with uniform probability on [0,1]

• Thus, having a uniformly distributed random number r on [0,1], one can sample the value t
with the probability density function f(t).

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 7

t = F-1(r) = -t ln(1 – r) 0 < r < 1

Simplest case – decay in flight (2)
• When the particle has traveled the d = t v, it decays.
• Decay of an unstable particle itself is a random process à Branching ratio

– For example:
p+ à µ+ nµ (99.9877 %)
p+ à µ+ nµ g (2.00 x 10-4 %)
p+ à e+ ne (1.23 x 10-4 %)
p+ à e+ ne g (7.39 x 10-7 %)
p+ à e+ ne p0 (1.036 x 10-8 %)
p+ à e+ ne e+ e- (3.2 x 10-9 %)

• Select a decay channel by shooting a random number
• In the rest frame of the parent particle, rotate decay products

in q [0,p) and f [0,2p) by shooting a pair of random numbers

• Finally, Lorentz-boost the decay products
• You need at least 4 random numbers to simulate one decay

in flight

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 8

dW = sinq dq df

q = cos-1(r1), f = 2p x r2 0 < r1, r2 < 1

Simplest case – decay in flight (2)
• When the particle has traveled the d = t v, it decays.
• Decay of an unstable particle itself is a random process à Branching ratio

– For example:
p+ à µ+ nµ (99.9877 %)
p+ à µ+ nµ g (2.00 x 10-4 %)
p+ à e+ ne (1.23 x 10-4 %)
p+ à e+ ne g (7.39 x 10-7 %)
p+ à e+ ne p0 (1.036 x 10-8 %)
p+ à e+ ne e+ e- (3.2 x 10-9 %)

• Select a decay channel by shooting a random number
• In the rest frame of the parent particle, rotate decay products

in q [0,p) and f [0,2p) by shooting a pair of random numbers

• Finally, Lorentz-boost the decay products
• You need at least 4 random numbers to simulate one decay

in flight

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 9

dW = sinq dq df

q = cos-1(r1), f = 2p x r2 0 < r1, r2 < 1

Evenly distributed points on a sphere

Radiation Simulation and Monte Carlo Method - M. Asai (SLAC) 10

q = cos-1(r1), f = 2p x r2
0 < r1, r2 < 1

q = p x r1, f = 2p x r2
0 < r1, r2 < 1

dW = sinq dq df

Version 10.5

Geant4: the briefest history & tour

Slides adapted from M. Asai (SLAC)

Geant4 History

• Early discussions, e.g. at CHEP 1994 @ San Francisco

– CERN & Japan seeded R&D proposal

• Dec ’94 – R&D project start

• Dec ’98 - First Geant4 public release - version “0.0”

• 1999: Used to simulate X-ray mission in ESA’s XMM mission

• 2001: Babar (SLAC) uses Geant4 in production

• 2004: ATLAS, CMS & LHCb start using Geant4 in production

• Several major architectural revisions
– E.g. STL migration, “cuts per region”, parallel worlds, multithreading

• Dec 2013 – Geant4 version 10.0 release – first with multi-threading

• Dec 2017 – Geant4 version 10.4 release

– May 25th, ’18 - Geant4 10.4-patch02 release

• Dec 2018 – Geant4 version 10.5 release

• We currently provide one public release every year (Nov/Dec)

– And one preview ‘beta’ release (June)

15

Current version

R&
D

ph
as

e
(R

D4
4)

Pr
od

uc
tio

n
ph

as
e

Kernel I - M.Asai (SLAC)

Essential elements of Geant4

• Kernel : Manages ‘mandatory’ parts, lets the physics & recording happen

– Geometry & materials

– Tracks
– Events (collisions or primaries)

– Runs

• Physics processes – cross sections and final state generation
– models for electromagnetic, hadronic, …

– assembled into coherent ‘physics lists’ for use in one or more application
areas

• Auxiliary parts

– User interface for control – communicating with the kernel (& the rest of G4)

– Visualization – interfaces and concrete implementations

– Interfaces for input of geometry, materials (‘persistency’)

– Record keeping what the user requests (hits = energy deposit, flux, ..) –
interfaces and examples

Introduction and Geant4 Kernel - J.Apostolakis

Geant4 – A Simulation Toolkit

Kernel I - M.Asai (SLAC) 17

S. Agostinelli et al.
Geant4: a simulation toolkit
NIM A, vol. 506, no. 3, pp. 250-303, 2003

J. Allison et al.
Geant4 Developments and Applications
IEEE Trans. Nucl. Sci., vol. 53, no. 1, pp. 270-278, 2006

http://www.geant4.org/

Version 10.5

Basic concepts
and kernel structure

Slides adapted from M. Asai (SLAC)

Terminology (jargon)

• Step point (fg trajectory point)
• Step
• Track (fg Trajectory)
• Event
• Run

• Process
– At rest, along step, post step

• Cut = production threshold

• Sensitive detector, score, hit, hits collection

Introduction and Geant4 Kernel - J.Apostolakis

Track in Geant4
• Track is a snapshot of a particle.

– It’s physical quantities represent the current ‘instant’ in the simulation.
It does not record previous quantities.

– Step is the “delta” information of a track. Track is not a collection of
steps. Instead, a track is updated in a series steps.

• Each Track object disappears (is deleted) when it either

– leaves the outermost (‘world’) volume,

– disappears in an interaction (e.g. by decay or inelastic scattering),

– it’s kinetic energy becomes zero and it has no “AtRest” process, or

– the user decides to kill it (‘artificially’).

• All tracks disappear. None persist at the end of event.

– To record tracks, you must use objects of a trajectory class.

• G4TrackingManager manages the processing a track, each one
represented by an object of the G4Track class.

• G4UserTrackingAction is the optional user hook.

Introduction and Geant4 Kernel - J.Apostolakis

(x, p, PDG, σ, q, ..)

γ
e-

e+

Step in Geant4

• A Step has two points and represents the “delta” information of a particle

(energy loss over the step, time-of-flight during by the step, etc.).

• During simulation Point knows the volume(s) in which it belongs (& its material).

• If a step is limited by a volume boundary, the end point physically stands on the

boundary, and it logically belongs to the next volume.

– Because such a Step knows materials of two volumes, boundary processes
(such as reflection, refractions and transition radiation) can be simulated.

• A step is represented by the G4Step class

• The G4SteppingManager class manages processing of steps (and update

tracks ..) and also calls the G4UserSteppingAction, an optional user hook.

Introduction and Geant4 Kernel - J.Apostolakis
Pre-step point

Post-step point

Step

Boundary

Event in Geant4

• An event is the basic unit of simulation in Geant4, represents a set of tracks

– At its beginning primary tracks are generated (and pushed onto a stack).

– One ‘track’ at a time is popped from the stack and it is “tracked”

• Any resulting secondary tracks are pushed back onto the stack.

• This “tracking” lasts as long as the stack has a track.

– When the stack becomes empty, it’s the end of processing that event.

• An object of the G4Event class represents an event. After its processing it
contains few objects:

– List of primary vertices and particles (its input)

– Hits and Trajectory collections (its output.)

• The G4EventManager class coordinates the processing of an event.

• A user can create a G4UserEventAction to hook into an event’s start & end.

Introduction and Geant4 Kernel - J.Apostolakis

Run in Geant4
• In analogy with real experiments, a G4Run starts with “Beam On”.

• By definition within a run, the user cannot change

– detector setup

– settings of physics processes

• Typically a run consists of one event loop. (Events are treated one after
another.)

• At a run’s start geometry structures and physics configurations are prepared

– the geometry is optimized for navigation,

– cross-section tables are calculated for the setup’s materials, ...

• G4RunManager class manages processing a run, a run is represented by a
G4Run object (or a user-defined class derived from G4Run.)

– A run class may have a summary results of the run.

• A user can create a subclass of G4UserRunAction to hook into its start & end.

Introduction and Geant4 Kernel - J.Apostolakis

Hands-on: Exercise 0

• We will make the first steps:
– check that your installations work
– look at one example

• In particular
– compile example B1
– run it (B1)
– take a short look at 1-2 of its files

cd
mkdir g4work
cd g4work

echo $G4COMP
ls $G4COMP/

mkdir taskA
cd taskA

cp -r $G4EXAMPLES/basic/B1 ./
ls
less README
nedit exampleB1.cc &

mkdir build
cd build
cmake -DGeant4_DIR=$G4COMP/ ../
make

./exampleB1

Introduction and Geant4 Kernel - J.Apostolakis

Some questions generated by this exercise

• How did we record the information to make the pictures ?
• How did we create the initial tracks ?
• What types of particles can be simulated by Geant4 ?
• How did we create the geometry we saw ?
• …

Introduction and Geant4 Kernel - J.Apostolakis

Key parts of a Geant4 Program – first view, from the kernel

Introduction and Geant4 Kernel - J.Apostolakis

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Trajectory and trajectory point

• How to keep the transient information in a G4Track?

• G4Trajectory is the class which copies some of G4Track information.
G4TrajectoryPoint is the class which copies some of G4Step information.
– G4Trajectory has a vector of G4TrajectoryPoint.
– At the end of event processing, G4Event has a collection of G4Trajectory

objects.
• /tracking/storeTrajectory must be set to 1.

• Keep in mind the distinction.

– G4Track fg G4Trajectory, G4Step fg G4TrajectoryPoint
• Given G4Trajectory and G4TrajectoryPoint objects persist till the end of an event,

you should be careful not to store too many trajectories.
– E.g. avoid for high energy EM shower tracks.

• G4Trajectory and G4TrajectoryPoint store only the minimum information.

– You can create your own trajectory / trajectory point classes to store information
you need. G4VTrajectory and G4VTrajectoryPoint are base classes.

Introduction and Geant4 Kernel - J.Apostolakis

Particle in Geant4
• A particle in Geant4 is represented by three layers of classes.

• G4Track
– Position, geometrical information, etc.
– This is a class representing a particle to be tracked.

• G4DynamicParticle

– "Dynamic" physical properties of a particle, such as momentum, energy, spin,
etc.

– Each G4Track object has its own and unique G4DynamicParticle object.
– This is a class representing an individual particle.

• G4ParticleDefinition

– "Static" properties of a particle, such as charge, mass, life time, decay
channels, etc.

– G4ProcessManager which describes processes involving to the particle
– All G4DynamicParticle objects of same kind of particle share the same

G4ParticleDefinition.

Introduction and Geant4 Kernel - J.Apostolakis

Tracking and processes

• The Geant4 tracking ‘loop’ is general.

– It is independent of the particle type,

– It obtains the list the applicable physics processes from each particle (type)

– It gives the chance to each process in turn:

• To contribute to determining the step length

• To contribute any possible changes in physical quantities of the track

• To generate secondary particles

• To suggest changes in the state of the track

– e.g. to suspend, postpone or kill it.

• This generality has strengths (adaptability) and costs (performance.)

Introduction and Geant4 Kernel - J.Apostolakis

Extract useful information

• Given geometry, physics and primary track generation, Geant4 does all the
physics simulation “silently”.
– You need to ask/get it to record the information useful to you.

• There are three ways:
– Built-in scoring (via UI commands)

• Most common physics quantities are available.
– Assign G4VSensitiveDetector to a volume to generate “hit”.

• with user hooks (G4UserEventAction, G4UserRunAction) access or
write out individual hits or sums of hits’ energies per event or run.

– Use scorers in tracking volume(s)
• Create scores for each event
• Create own Run class to accumulate scores

• Or score using the user hooks (G4User Tracking & Stepping Action, ..)
– You have full access to almost all information
– Straight-forward in sequential mode, but do-it-yourself (not recommended.)

Introduction and Geant4 Kernel - J.Apostolakis

Writing to cout / cerr - via G4cout, G4cerr !

• G4cout and G4cerr are ostream objects defined by Geant4.

– G4endl is also provided.

G4cout << ”Hello Geant4!” << G4endl;

• Some GUIs buffer these output streams to display print-out in another window or

provide storing / editing functionality.

– The user is asked to avoid using std::cout and std::cerr.

• We recommend also that the user also avoids using the ‘raw’ std::cin for input.

– Instead we suggest to use the G4 user-defined commands which tie into the

Geant4 User Interface system (provided by the intercoms category).

• You can use ‘ordinary’ file I/O – GEant4 will not interfere with it.

Introduction and Geant4 Kernel - J.Apostolakis

Geant4 kernel

Introduction and Geant4 Kernel - J.Apostolakis

4 Geant4 consists of 17 categories.

4 Independently developed and
maintained by a Working Group each.

4 Interfaces between categories (e.g. top

level design) are maintained by the
global architecture WG.

4 Geant4 Kernel

4 Handles run, event, track, step, hit,

trajectory.

4 Provides frameworks of geometrical
representation and physics processes.

4 4
4

4

4

4 4
4

4

4
+

4

Version 10.5

User classes

To use Geant4, you have to…

• Geant4 is a toolkit. You have to build an application.

• To make an application, you have to

– Define your geometrical setup

• Material, volume

– Define physics to get involved

• Particles, physics processes/models

• Production thresholds

– Define how an event starts

• Primary track generation

– Extract information useful to you

• You may also want to

– Visualize geometry, trajectories and physics output

– Utilize (Graphical) User Interface

– Define your own UI commands

– etc.

Introduction and Geant4 Kernel - J.Apostolakis

User classes
• main()

– Geant4 does not provide main().
• Initialization classes

– Use G4RunManager::SetUserInitialization() to define.
– Invoked at the initialization

• G4VUserDetectorConstruction
• G4VUserPhysicsList
• G4VUserActionInitialization

• Action classes
– Instantiate in your G4VUserActionInitialization.
– Invoked during an event loop

• G4VUserPrimaryGeneratorAction
• G4UserRunAction
• G4UserEventAction
• G4UserStackingAction
• G4UserTrackingAction
• G4UserSteppingAction

Introduction and Geant4 Kernel - J.Apostolakis

Note : classes written in red are
mandatory.

The main program

• Geant4 does not provide a main().

• In your main(), you have to

– Construct G4RunManager (sequential mode) or G4MTRunManager

(multithreaded mode)

– Set user mandatory initialization classes to RunManager

• G4VUserDetectorConstruction

• G4VUserPhysicsList

• G4VUserActionInitialization

• You can define VisManager, (G)UI session, optional user action classes,

and/or your persistency manager in your main().

Introduction and Geant4 Kernel - J.Apostolakis

Describe your detector

• Derive your own concrete class from G4VUserDetectorConstruction
abstract base class.

• In the virtual method Construct(), that is invoked in the master thread

(and in sequential mode)

– Instantiate all necessary materials

– Instantiate volumes of your detector geometry

• In the virtual method ConstructSDandField(), that is invoked in each

worker thread (and in sequential mode)

– Instantiate your sensitive detector classes and field classes and set
them to the corresponding logical volumes and field managers,

respectively.

Introduction and Geant4 Kernel - J.Apostolakis

Select physics processes

• Geant4 does not have any default particles or processes.

– Even for the particle transportation, you have to define it explicitly.

• Derive your own concrete class from G4VUserPhysicsList abstract
base class.

– Define all necessary particles

– Define all necessary processes and assign them to proper particles

– Define cut-off ranges applied to the world (and each region)

• Primarily, the user’s task is choosing a “pre-packaged” physics list, that
combines physics processes and models that are relevant to a typical
application use-cases.
– If “pre-packaged” physics lists do not meet your needs, you may

add or alternate some processes/models.
– If you are brave enough, you may implement your physics list.

Introduction and Geant4 Kernel - J.Apostolakis

Generate primary event

• This is the only mandatory user action class.

• Derive your concrete class from G4VUserPrimaryGeneratorAction abstract

base class.

• Pass a G4Event object to one or more primary generator concrete class objects

which generate primary vertices and primary particles.

• Geant4 provides several generators in addition to the

G4VPrimaryParticlegenerator base class.

– G4ParticleGun

– G4HEPEvtInterface, G4HepMCInterface

• Interface to /hepevt/ common block or HepMC class

– G4GeneralParticleSource

• Define radioactivity

Introduction and Geant4 Kernel - J.Apostolakis

Optional user action classes
• All user action classes, methods of which are invoked during “Beam On”, must

be constructed in the user’s main() and must be set to the RunManager.

• G4UserRunAction
– G4Run* GenerateRun()

• Instantiate user-customized run object

– void BeginOfRunAction(const G4Run*)
• Define histograms

– void EndOfRunAction(const G4Run*)

• Analyze the run
• Store histograms

• G4UserEventAction

– void BeginOfEventAction(const G4Event*)
• Event selection

– void EndOfEventAction(const G4Event*)

• Output event information

Introduction and Geant4 Kernel - J.Apostolakis

Optional user action classes
• G4UserStackingAction

– void PrepareNewEvent()

• Reset priority control

– G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)

• Invoked every time a new track is pushed

• Classify a new track -- priority control

– Urgent, Waiting, PostponeToNextEvent, Kill

– void NewStage()

• Invoked when the Urgent stack becomes empty

• Change the classification criteria

• Event filtering (Event abortion)

Introduction and Geant4 Kernel - J.Apostolakis

Optional user action classes
• G4UserTrackingAction

– void PreUserTrackingAction(const G4Track*)

• Decide trajectory should be stored or not

• Create user-defined trajectory

– void PostUserTrackingAction(const G4Track*)

• Delete unnecessary trajectory

• G4UserSteppingAction

– void UserSteppingAction(const G4Step*)

• Kill / suspend / postpone the track

• Draw the step (for a track not to be stored as a trajectory)

Introduction and Geant4 Kernel - J.Apostolakis

Sequential mode

Introduction and Geant4 Kernel - J.Apostolakis

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

UserRunAction

UserEventAction

UserTrackingAction

UserSteppingAction

UserStackingAction

UserPrimaryGeneratorAction

What you need to know … and where you can learn it
• Define material and geometry

è G4VUserDetectorConstruction

Material and Geometry lectures
• Select appropriate particles and processes and define production threshold(s)

è G4VUserPhysicsList
Physics lectures

• Instantiate user action classes
è G4VUserActionInitialization

Hands-on

• Define the way of primary particle generation
è G4VUserPrimaryGeneratorAction

Primary particle lecture
• Define the way to extract useful information from Geant4

è G4VUserDetectorConstruction, G4UserEventAction, G4Run, G4UserRunAction
è G4SensitiveDetector, G4VHit, G4VHitsCollection

Scoring lectures

Introduction and Geant4 Kernel - J.Apostolakis

Version 10.5

Additional concepts

Geant4 as a state machine

• Geant4 has seven application states.
– G4State_PreInit

• Initial condition
– G4State_Init

• During initialization
– G4State_Idle

• Ready to start a run
– G4State_GeomClosed

• Geometry is optimized and ready to process
an event

– G4State_EventProc
• An event is processing

– G4State_Quit
• (Normal) termination

– G4State_Abort
• A fatal exception occurred and program is

aborting

Introduction and Geant4 Kernel - J.Apostolakis
Note: Toggles between GeomClosed and EventProc occur
for each thread asynchronously in multithreaded mode.

PreInit

Idle

EventProc

GeomClosed

Quit

Abort

initialize

beamOn exit

Ru
n

(e
ve
nt
 l
oo
p)

Init

