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Defining a magnetic field



How to define a Magnetic field

• To create a (magnetic) field you must instantiate a G4MagneticField object in 
the ConstructSDandField() method of your DetectorConstruction class

– Uniform field : Use an object of the G4UniformMagField class

G4MagneticField* magField =   

new G4UniformMagField(G4ThreeVector(1.*Tesla,0.,0.);

– Non-uniform field : Create your own concrete class derived from 
G4MagneticField and implement the GetFieldValue method.

void MyField::GetFieldValue(

const double Point[4], double *field) const

• Point[0..2] are x,y,z position in global coordinates, Point[3] is time

• field[0..2] are output x,y,z components of magnetic field (in G4 units)
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How to assign a field to the whole detector

• A global field manager is associated with the ‘world’ volume

– it already exists, before G4VUserDetectorConstruction is called, 

– it is created / set in G4TransportationManager. 

• To associate your field with the world, you must obtain that global field manager:

G4Fieldmanager* globalFieldMgr = G4TransportationManager:: 

GetTransportationManager()-> GetFieldManager();

• And then set it in that field manager:

globalFieldMgr->SetDetectorField(field);

• Hands-on: look at the ConstructSDandField() method’s code in the Detector 
Construction method(s) of basic examples B2/B2b and B5.
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Global and local fields
• Other volumes can override this

– An alternative field manager can be associated with any logical volume
• The field must accept position in global coordinates and return field in 

global coordinates
– By default this is propagated to all its daughter volumes
G4FieldManager* localFieldMgr

= new G4FieldManager(magField);

logVolume->setFieldManager(localFieldMgr, true);

where ‘true’ makes it push the field to all the volumes it contains, unless a 
daughter has its own field manager.

• Customizing the field propagation classes
– Choosing an appropriate stepper for your field

– Setting precision parameters

Magnetic Field - J.Apostolakis (adapted from M. Asai) 5



Magnetic field (2)

MyField* myMagneticField = new MyField();

G4Fieldmanager* fieldMgr = new G4FieldManager();

fieldMgr->SetDetectorField(myMagneticField);

fieldMgr->CreateChordFinder(myMagneticField); // Default 

parameters

G4bool forceToAllContained = true; // Propagate to all 

fMagneticLogical->SetFieldManager(fieldMgr,      

forceToAllContained);

// Register the field and its manager for deletion 

G4AutoDelete::Register(myMagneticField);

G4AutoDelete::Register(fieldMgr);

• /example/basic/B5 is a good starting point
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Integration of the trajectory of motion



Integration of motion in field

• In order to propagate a particle inside a field  (e.g. magnetic, electric or both), we 

solve the equation of motion of the particle in the field. 

• By default G4 uses a Runge-Kutta method to integrate the ordinary differential 

equations of motion

• Using the method to calculate the track's motion in a field, Geant4 breaks up this 

curved path into linear chord segments. 

– chord segments chosen so that they closely approximate the curved path.

– Chords are chosen so that their sagitta is smaller than the value of the     

“miss distance” user arameter
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Methods of integration

• Several other Runge-Kutta ‘steppers’ and other integration methods are 
available.

– The established 4th/5th order RK ‘Dormand Prince’ is now default (G4 10.4)

• In specific cases other solvers can also be used: 

– In a uniform field, using a helix – the analytical solution.

– In a slowly varying, smooth field, methods that combine helix & RK

– high efficiency RK solvers provided in recent releases (‘FSAL’, RK steppers
with Interpolation)
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Tracking in field

• We use the chords to interrogate the G4Navigator, to see whether the track has 
crossed a volume boundary.

• One physics/tracking step can create several chords.
– In some cases, one step may consist of several helix turns.

• User can set the accuracy of the volume intersection, 
– By setting a parameter called the “miss distance”

• It is a measure of the error in whether the approximate track intersects a 
volume

• It is compared with the estimated saggita of a chord
• It is quite expensive in CPU performance to set too small “miss distance”.
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Regular versus Smooth Trajectory

Yellow are the actual step points used by Geant4
Magenta are auxiliary points added just for purposes of visualization
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Smooth Trajectory Makes Big Difference for Trajectories that 
Loop in a Magnetic Field

n Yellow dots are the actual step points used by Geant4
n Magenta dots are auxiliary points added just for purposes of visualization
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Tuning precision of tracking in field



Tunable parameters
• In addition to the “miss distance” there are two more 

parameters which the user can set in order to adjust the 
accuracy (and performance) of tracking in a field. 

– These parameters govern the accuracy of the 
intersection with a volume boundary and the accuracy 
of the integration of other steps. 

• The “delta intersection” parameter is the accuracy to which 
an intersection with a volume boundary is calculated. This 
parameter is especially important because it is used to limit 
a bias that our algorithm (for boundary crossing in a field) 
exhibits. The intersection point is always on the 'inside' of 
the curve. By setting a value for this parameter that is much 
smaller than some acceptable error, the user can limit the 
effect of this bias. 
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Tunable parameters
• The “epsilon” parameters guide the accuracy for the endpoint of 'ordinary' integration steps, ones 

which do not intersect a volume boundary. This parameter limits the estimated relative error of the 
endpoint of each physics step

• “delta intersection” and “delta one step” are strongly coupled. These values must be reasonably 
close to each other. 

– At most within one order of magnitude
• These tunable parameters can be set by

theChordFinder->SetDeltaChord( miss_distance );
theFieldManager->SetDeltaIntersection( delta_intersection );

The best way to obtain a specific precision for the integration is to give a maximum relative error 
allowed: 

double epsilon = 1.0e-6;
theFieldManager->SetEpsilonMax( epsilon );
Typically the same value should also be set to the EpsilonMin parameter as well:
theFieldManager->SetEpsilonMin( epsilon );

• For more look  in Section 4.3 (Electromagnetic Field) of the “Guide for Application Developers”.
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Other types of field

• The user can create their own type of field
– inheriting from G4VField, 

– using an associated Equation of Motion class (inheriting from G4EqRhs) to 
simulate other types of fields. 

– fields be time-dependent.

• For a few cases Geant4 has an existing class:

– pure electric field, Geant4 has G4ElectricField and G4UniformElectricField

– combined electromagnetic field, the G4ElectroMagneticField class. 

• A different Equation of Motion class is used for electromagnetic.

• For the full exercise of the options for fields you can browse 
examples/extended/field/

– e.g. field01 uses alternative integration methods (see file src/F01FieldSetup.cc)
– Field02 demonstrates electric field
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