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● Hadrons (π±, K±, K°L , p, n, α, etc.), produced in jets and 
decays, traverse the detectors (H,C,Ar,Si,Al,Fe,Cu,W,Pb...)

● Therefore we need to model hadronic interactions
       hadron – nucleus  ->  anything
in our detector simulations

● In principle, QCD is the theory that describes all hadronic 
interactions; in practice, perturbative calculations are 
applicable only in a tiny (but important!) phase-space region

● the hard scattering at high transverse momentum

whereas for the rest, i.e. most of the phase space
● soft scattering, re-scattering, hadronization, nucleus de-excitation

 only approximated models are available

● Hadronic models are valid for limited combinations of

particle type – energy – target material

Hadronic interactions
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Partial Hadronic Model Inventory
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String model Intra-nuclear cascade model

Pre-equilibrium (Precompound) model Equilibrium (Evaporation) model
6
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● In Geant4, there is a clear separation between 
cross sections – related to the probability of an elastic or 
inelastic hadron-nucleus interaction, and therefore to the length 
that a hadron projectile flies in a material before interacting –
and final-state models – related to the number, type and 
properties of the secondaries produced by the interaction

● For each combination of projectile – energy – target
● ≥ 1 cross sections must be specified in a physics list : 

                              the first available is used
● 1 or 2 (final-state) models must be specified in a physics list :

                                     if two, a random number is thrown to     
                                     decide which of the two models to use
– linear probability as a function of the energy, over an interval 

called transition region, defined arbitrarily to get smooth 
observables

Hadronic Cross Sections and (Final-State) Models
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Cross Sections

Models

Hadronic Framework
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● Some physics models or cross-sections are data-driven, i.e. they need 
as input some phenomenogical data; others need as input the results 
of intensive computations, which are done before the simulation 

● If you build Geant4 with the option  GEANT4_INSTALL_DATA  
then the data-sets are automatically downloaded & installed

● Else (you want or need to do it manually, e.g. for older versions of G4, or to 
use your own data libraries) you need to install the data-sets yourself
and then inform Geant4 where they are by defining the following 
environmental variables, e.g. for the latest version G4 10.5 :

   export G4LEDATA=/dir-path/G4EMLOW7.7
   export G4LEVELGAMMADATA=/dir-path/PhotonEvaporation5.3
   export G4SAIDXSDATA=/dir-path/G4SAIDDATA2.0
   export G4PARTICLEXSDATA=/dir-path/G4PARTICLEXS1.1
   export G4ENSDFSTATEDATA=/dir-path/G4ENSDFSTATE2.2
   export G4NEUTRONHPDATA=/dir-path/G4NDL4.5
   export G4RADIOACTIVEDATA=/dir-path/RadioactiveDecay5.3
   export G4REALSURFACEDATA=/dir-path/RealSurface2.1.1
   export G4INCLDATA=/dir-path/G4INCL1.0
   export G4ABLADATA=/dir-path/G4ABLA3.1

G4 Datasets  (1/3)
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● G4LEDATA : low-energy electromagnetic data, mostly derived from 
Livermore data libraries; used in all EM options

● G4LEVELGAMMADATA : photon evaporation data, come from the 
Evaluated Nuclear Structure Data File (ENSDF); used by 
Precompound/de-excitation models (and RadioactiveDecay if present)

● G4SAIDXSDATA : data evaluated from the SAID database for 
nucleon and pion cross sections below 3 GeV; used in all physics lists  

● G4PARTICLEXSDATA : evaluated neutron (as well as proton, 
deuteron, triton, He3 and alpha) cross sections derived from G4NDL 
(G4PARTICLEHPDATA) by averaging in bin of energies; used in all 
physics lists

● G4ENSDFSTATEDATA : nuclear properties, from Evaluated 
Nuclear Structure Data File (ENSDF); used in all physics lists

G4 Datasets  (2/3)
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● G4REALSURFACEDATA : data for measured optical surface 
reflectance look-up tables; used only when optical physics is activated

● G4NEUTRONHPDATA : evaluated neutron data of cross sections, 
angular distributions and final-state information; come largely from the 
ENDF/B-VII library; used only in _HP physics lists

● G4RADIOACTIVEDATA : radioactive decay data, come from the 
ENSDF; used only when radioactive decay is activated

● G4INCLDATA : data for the intranuclear cascade model INCLXX

● G4ABLADATA : data for the ABLA de-excitation model, which is an  
alternative de-excitation available for INCLXX

● G4PARTICLEHPDATA : data for ParticleHP (p, d, t, He3, α);
                                              used only by QGSP_BIC_AllHP

G4 Datasets  (3/3)
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An interesting complication: Neutrons
● Neutrons are abundantly produced

● Mostly “soft” neutrons, produced by the de-excitation of nuclei, 
after hadron-nucleus interactions

● It is typically the 3rd most produced particle (after e-, γ)

● Before a neutron “disappears” via an inelastic interaction,
it can have many elastic scatterings with nuclei, and 
eventually it can “thermalize” in the environment

● The CPU time of the detector simulation can vary by an 
order of magnitude according to the physical accuracy of 
the neutron transportation simulation

● For typical high-energy applications, a simple treatment is 
enough (luckily!)

● For activation and radiation damage studies, a more precise, 
data-driven and isotope-specific treatment is needed, 
especially for neutrons of kinetic energy below ~ MeV
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● High Precision treatment of low-energy neutrons
● Ekin < 20 MeV , down to thermal energies
● Includes 4 types of interactions: 

radiative capture, elastic scattering, fission, inelastic scattering
● Based on evaluated neutron scattering data libraries

(pointed by the environmental variable G4NEUTRONHPDATA )

● It is precise, but very slow!

● It is not needed for most high-energy applications; useful for:
● cavern background, shielding, radiation damage, radio-protection

● Not used in most physics lists.
If you need it, use one of the _HP physics lists:
FTFP_BERT_HP , QGSP_BERT_HP , QGSP_BIC_(All)HP , 
Shielding(LEND)

Neutron-HP
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Hadronic showers
● A single hadron impinging on a large block of matter (e.g. a 

hadron calorimeter) produces secondary hadrons of lower 
energies, which in turn can produce other hadrons, and so 
on: the set of these particles is called a hadronic shower

● e-/e+/γ (electromagnetic component) are also produced copiously 
because of π° -> γ γ  and ionization of charged particles

● The development of a hadronic shower involves 
many energy scales, from hundreds of GeV down to
thermal energies
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The simulation of hadronic showers is an important 
ingredient for the simulation of jets

● The other ingredients are:
– the Monte Carlo event generator

– the experiment-specific aspects: geometry, digitization, pile-up

● Jets (= collimated sprays of hadrons) are produced by strong (QCD)
or electroweak (hadronic decays of τ / W / Z / H ) interactions 

● Jets can be part of the signal and/or the background
– multi-jets in the same event are typical in hadron colliders as LHC,
    but it is also frequent in high-energy e+ e- linear colliders as ILC/CLIC

● For future accelerators (e.g. LC (ILC/CLIC), FCC), the simulation
of jets is essential for the optimal design of the detector

● For ATLAS and CMS, the simulation of jets is now important for 
physics analyses

Jets
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Physics Lists
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● Physics model = final-state generator
● Validated and tuned by Geant4 developers with thin-target data

● Physics process = cross section + final-state model
● Different physics models can share the same cross section

● Physics list = a list of physics processes associated to each 
                      particle present in the simulation

● Chosen by users: trade-off accuracy vs. speed
● Geant4 offers some reference physics lists ready to be used
● Validated by the users with (test-beam and/or collision) data

Recap: Model, Process, Physics List
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● Writing a complete and realistic physics list for EM physics
and even more for hadronic physics is involved, and it
depends on the application. To make things easier, 
pre-packaged reference physics lists are provided by
Geant4, according to some use cases

● Few choices are available for EM physics (different
production cuts and/or multiple scattering configurations); 
several possibilities are available for hadronics physics: e.g.
FTFP_BERT, FTFP_BERT_HP, Shielding, FTFP_INCLXX, 
QGSP_FTFP_BERT, QGSP_BIC, etc.

● These lists are “best guess” of the physics needed in a
given case; they are intended as starting point (and their
builders can be re-used); users are responsible of 
validating the physics list used in their application

Reference Physics Lists
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Recommended physics list for High-Energy Physics.
Its main components are the following:

● FTF (Fritiof string) model, used above 3 GeV

● BERT (Bertini cascade) model, used below 12 GeV

● Nucleus de-excitation: Precompound + evaporation

● Neutron capture

● Nuclear capture of negatively charged hadrons at rest

● Gamma- and electron-nuclear interactions

● Hadron elastic

● Standard electromagnetic physics

● NO : neutron-HP, radioactive decay, optical photons

FTFP_BERT
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● FTFP_BERT_HP : as FTFP_BERT, but with NeutronHP for                 
                                neutrons of kinetic energy below 20 MeV

● Shielding : similar to FTFP_BERT_HP, but with Radioactive Decay
                     and QMD (Quantum Molecular Dynamics) for ions

– QMD used in the range [100 MeV, 10 GeV] : below BIC, above FTFP

● FTFP_INCLXX : similar to FTFP_BERT, but using INCLXX                  
                              instead of BERT for some particles

– Protons, neutrons, charged pions below 20 GeV; FTFP above 15 GeV

● QGSP_FTFP_BERT : similar to FTFP_BERT, but using QGS              
                                      (Quark Gluon String) model at high energies

– [6, 8] GeV transition BERT − FTFP ; [12, 25] GeV transition FTFP − QGSP

● QGSP_BIC : similar to FTFP_BERT but using QGS and BIC (Binary 
                         Cascade) instead of FTF and BERT when possible

– Protons, neutrons : BIC < 9.9 GeV , FTFP in [9.5, 25] GeV , QGSP > 12 GeV
Pions & kaons :      BERT < 5 GeV , FTFP in [   4, 25] GeV , QGSP > 12 GeV

A few other Physics Lists
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Let's consider the example of FTFP_BERT :
In your main program:

    #include "FTFP_BERT.hh"
    ...
    int main( int argc, char** argv ) {
       ...
       G4VModularPhysicsList* physicsList = new FTFP_BERT;
       runManager->SetUserInitialization( physicsList );
       ...
    }

How to use a Reference Physics List
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● Adding radioactive decay :
In your main program:
   #include "G4RadioactiveDecayPhysics.hh"
    int main( int argc, char** argv ) {
       ...
       G4VModularPhysicsList* physicsList = new FTFP_BERT;
       physicsList->RegisterPhysics( new G4RadioactiveDecayPhysics );
       runManager->SetUserInitialization( physicsList );
       ...
    }

● Adding optical photon and its processes :
In your main program:
   #include "G4OpticalPhysics.hh"
    int main( int argc, char** argv ) {
       ...
       G4VModularPhysicsList* physicsList = new FTFP_BERT;
       physicsList->RegisterPhysics( new G4OpticalPhysics );
       runManager->SetUserInitialization( physicsList );
       ...
    }

How to add extra physics to a reference P.L.
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Validation
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Validation & tuning of hadronic models
● The developers of the hadronic models are responsible of 

the tuning & validation of these models with thin-target 
(microscopic, single-interaction) measurements

● Validation of complete physics configurations is performed
by users mostly via measurements of hadronic showers
in calorimeter test-beam setups (thick targets)

● The most important application of the hadronic models for 
collider experiments is the simulation of jets, which involves:

1. the Monte Carlo event generator

2. the convolution of the showers for each constituent hadron

3. experiment specific: geometry & materials, digitization, etc.
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Model-level thin-target test
FTF validation, HARP-CDP data

25
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LHC calorimeter test-beams

26
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● The simulation of hadronic showers can be validated with 
calorimeter test-beam set-ups, with pion and proton beams 
of various energies, considering the following observables:

● Energy response:                       Erec / Ebeam

● Energy resolution:                       Δ Erec / Erec 
● Shower profile: 

– Longitudinal:                          Erec(z) / Erec

– Lateral (transverse or radial):    Erec(r) /  Erec

● Note that we can test directly only single-hadron showers in 
calorimeter test-beam set-ups, whereas for a collider experiment
(e.g. ATLAS and CMS) jets are measured.
The simulation of jets involves:
1. the Monte Carlo Event Generator
2. the convolution of the showers for each constituent hadron

Calorimeter observables
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Energy resolution

ATLAS HEC test-beam

28
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Exercise
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Some suggestions to get familiar with Geant4 and hadronic 
physics aspects relevant for high-energy physics:

● Build a simplified, hadronic sampling calorimeter
● Or use/modify an already existing calorimeter example

● Using the user actions, plot and/or print some of the 
properties of hadronic showers

● Like the visible energy, energy resolution, shower shapes

● Study how the properties of hadronic showers change
● From one “event” (= shower) to another
● On average, by changing the beam particle type 

(π±, K±, K°L , p , n , etc.) and the beam energy (GeV – TeV)
● By changing the sampling calorimeter (materials, dimensions)
● By changing the physics list
● By changing the version of Geant4

Exercise : “offline”
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● Consider the same example you are already familiar with:
● examples/basic/B4/B4a

● Visualize the shower and consider the visible energy
● E.g. the sum of the deposited energy in the gap (liquid-argon)

● Enlarge the calorimeter (from a typical EM to a typical HAD)

● In the method B4DetectorConstruction::DefineVolumes 
increase both nofLayers and calorSizeXY by a factor of 10

● Observe how the properties of showers change
● From one “event” (= shower) to another (and on average)
● Between  e−  and  pi−  of the same energy, e.g.  10 GeV
● Between different beam energies, e.g.  10 GeV  vs.  100 GeV
● By changing the physics list, e.g. FTFP_BERT vs. QGSP_BIC_HP

– Look also at the printout list of hadronic models and their energy ranges

Exercise : for today
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