Current GENSER status

Oleg Zenin

22.11.2006

GENSER 1_4_1 status

- Based on GENSER 1_4_0 release; many symlinks.
- 14 packages are tested in tests 1_02
- Platforms: slc3_ia32_323, slc4_ia32_gcc34, slc4_amd64_gcc34
- The last monolithic release.

New GENSER2 structure

Reasons to move away from GENSER 1_X_X structure are:

- SCRAM limitations:
 - fixed structure is required for a package source tree
 - low flexibility while building packages
 - manual work needed to make author's sources fit into SCRAM build requirements
 - the previous item is a potential source of errors
- Need for a possibility to choose an abitrary combination of generator versions within one GENSER release.
- Using native UNIX build tools allows to
 - maximally preserve author's structure of sources
 - rapidly adopt author's modifications and fixes for a particular package independently of others, therefore – continuous release cycle
 - subjective(?): reduce manual work of GENSER integrators

Release policy

- Less frequent freezing of the set of generators as a whole.
- Several recent generator versions are simultaneously available in a binary form.
- The latest version of a generator can be built via

```
% cvs -d :kserver:simu.cvs.cern.ch:/cvs/simu checkout \
simu/GENSER2/TOOLS/Generator_Name
```

- % cd simu/GENSER2/TOOLS/Generator_Name
- % ./mknewGenerator_Name
- % cd \$TMPDIR/simu/GENSER2/Generator_Name
- % ./configure && make && make install

GENSER2 directory structure

(Trying to reproduce the structure of "external" packages)

Binaries and include files

/afs/cern.ch/sw/lcg/external/MCGenerators/tarFiles/Generator_Name.Version.tgz /afs/cern.ch/sw/lcg/external/distributions/Generator_Name.Version.Platform.tgz

A "bootstrap" directory structure

Functions of the ./newGenerator_Name script:

- 1. Download the latest version of generator source code from author's site.
- 2. Impose GENSER2-specific patches (both for source code and author's build sctipts).
- 3. Add GENSER wrappers for author's ./configure & Makefile's if needed.
- 4. Inflate the build directory structure (cf. next slide) and put new sources and build scripts there.
- ./configure [options] && make in the build directory is up to end user.

Build directory structure

```
..../simu/GENSER2/Generator_Name/configure
                            /Makefile
                            /README
                            /INSTALL
                        |..../src/Makefile
                                       /*.{f,c,cc}
                        |....include/*.{h,inc}
                        |....examples/Makefile
                                       /*.{f,c,cc}
                        |.....bin/
                        |.....lib/lib*.so
                                      |./archive/lib*.a
```

Using GENSER2 repository

```
/afs/cern.ch/sw/lcg/external/MCGenerators/ .....
..../pythia6/408/slc3_ia32_gcc323/lib/libpythia6.so
                                     /libpythia6_dummy.so
                                     /libpythia6_pdfdummy.so
                                     /librootinterface.so
                                     /archive/libpythia6.a
                                              /libpythia6_dummy.a
                                              /libpythia6_pdfdummy.a
                                              /librootinterface.a
                                  /include/gen_pyt_s.inc
                                          /gen_pyt_short.inc
                                          /general_pythia.inc
                                          /hepevt.inc
                                          /pyt_cms_s.inc
                                          /pyt_cms_short.inc
                                          /pythia_cms.inc
                                          /pythia_cms_short.inc
..../pythia6/408/slc3_ia32_gcc323_dbg/....
..../pythia6/408.2/slc3_ia32_gcc323/....
..../pythia6/406/slc3_ia32_gcc323/....
..../herwig/6510/slc3_ia32_gcc323/....
```

Usage differences w.r.t. GENSER 1_X_X

- Multiple versions of any generator are available simultaneously within one release.
- No more explicit version numbers in library names.

Build rules should include, e.g.:

```
MCGENERATORS=/afs/cern.ch/sw/lcg/external/MCGenerators
```

PLATFORM=slc3_ia32_gcc323

PYTHIA_VERSION=408

LIBS=-L\${MCGENERATORS}/pythia6/\${PYTHIA_VERSION}/\${PLATFORM}/lib/\

-lpythia6

Usage of GENSER2 packages is similar to that of "external" ones.

Current status of GENSER2 Generators installed

Generator	Version	Platform
pythia6	406	slc3_ia32_gcc323
	408	
	408.2	
pythia8	060	slc3_ia32_gcc323
herwig	6.510	slc3_ia32_gcc323
lhapdf	5.2.3	slc3_ia32_gcc323
sherpa	1.0.5	slc4_ia32_gcc34
	1.0.8	slc3_ia32_gcc323

Generators to be installed by 31.12.2006

Generator	Version	Platform
Jimmy	4.2	slc3_ia32_gcc323
Photos	2.1.5	slc3_ia32_gcc323
EvtGenLHC	1.3	slc3_ia32_gcc323
Alpgen	2.0.6	slc3_ia32_gcc323
${ t MCatNLO}$	3.1.0	slc3_ia32_gcc323
Herwig++	2.0.0	slc3_ia32_gcc323

Priority list can be revised according to experiments' demands.

Validation

Current set of tests (tests-1.02):

pythia 1	Cross section of Z + jet with lower Qt cut 20 GeV
pythia 2	Fraction of events from $Z + jet (Z -> all leptons)$ with
	2 detectable electrons or muons and 2 jets.
pythia 3	Same as pythia 1,2 (using HepMC/PythiaWrapper.h and event
pythia 4	analyzers from libtests*, see/include/ANNHEPMC/)
pythia 5-26	Cross section of single W+- production is calculated using
	various proton PDF sets via LHAPDF library. Tests were up to
	27 (up to 70350), but 70350 stopped to work in lhapdf 5.2.1
photos 1	Fraction of events Z'->e+e- with at least one detectable gamma
	as simulated by PYTHIA with QED corr. on (no photos in fact)
photos 2	Fraction of events Z'->e+e- with at least one detectable gamma
	as simulated by PYTHIA(QED off) + PHOTOS
herwig 1	Cross section of Z + jet (Z -> all leptons)
herwig 2	Fraction of events from $Z + jet (Z \rightarrow all leptons)$ with
	2 detectable electrons or muons and 2 jets.
herwig 3	Same as 1,2 above but with Z->e,mu
herwig 4	and using HepMC. (see ./herwig_hepmc.cc)
herwig 5-26	Cross section of single W+- production is calculated using
	various proton PDF sets via LHAPDF library.
Herwig++ 1	Cross section of the default process as run with LHC.in
	In the version 2_0_0 the default process is qq2gZ2ff (note
	that it was different in earlier versions)
isajet 1-24	cross section of single W production (Drell-Yan) at LHC for
	different PDF sets of lhapdf (same as pythia-lhapdf)
evtgenlhc 1	In Dalitz decay: average invariant mass of particles 1 and 2
_	11

```
evtgenlhc 2
               In Dalitz decay: average invariant mass of particles 2 and 3
lhapdf 1-20
               PDF sets values with self-explanatory comments
lhapdf 21-40
               PDF sets values obtained using lhaglue with self-explanatory
               comments
tauola 1
               E(PI+- + K+- + A1+-) / E(TAU) ratio
               in f + fbar \rightarrow Z0 + W+/- with Z0 \rightarrow tau+ tau- and
               W+/- -> tau+/- nutau with TAU decayed BY PYTHIA (no tauola)
               E(PI+- + K+- + A1+-) / E(TAU) as above TAU decayed by TAUOLA
tauola 2
pythia8 1
               Do the same as pythia tests 1 and 2. Note that for new
pythia8 2
               versions one could need to change the code of the test
               since now part of parameters are set in Fortran part of pythia.
pyquen 1
               Mean mult. in QCD jets events simulated by PYTHIA (no PYQUEN)
pyquen 2
               Mean |Eta| in QCD jets events simulated by PYTHIA (no PYQUEN)
pyquen 3
               Mean Pt in QCD jets events simulated by PYTHIA (no PYQUEN)
pyquen 4
               Mean mult. in QCD jets events simulated by PYTHIA - PYQUEN
pyquen 5
               Mean |Eta| in QCD jets events simulated by PYTHIA - PYQUEN
               Mean Pt in QCD jets events simulated by PYTHIA - PYQUEN
pyquen 6
toprex 1
               cross section of the tW-channel single top production
alpgen 1
               Cross section of Z + 2jets with lower Pt cut 20 GeV
alpgen 2
               Fraction of events from Z + 2jets (Z \rightarrow electrons) with
               2 detectable electrons and 2 jets. (alpgen + pythia)
```

The examples also use (and thus test) ThePEG and HepMC

Primary goals w.r.t. tests suite:

- Migration of existing tests-1.02 suite to GENSER2
- Adding new tests for Sherpa, etc.

An input from experiments is needed to implement more complex tests

Conclusion

- A complete migration to GENSER2 is expected by the end of 2006
- Experiments should start adopting to new GENSER2 structure soon