

Generator Services monthly meeting CERN 22 November 2006

New developments in PYTHIA 8

Torbjörn Sjöstrand

CERN/PH and

Department of Theoretical Physics, Lund University

PYTHIA 6 status

PYTHIA 6 still being actively developed and maintained:

- multiple interactions and underlying event, with
- transverse-momentum-ordered showers
- SUSY interfaces (SLHA) and simulation
- regular bug fixes and minor improvements
- moving to CEDAR HepForge (code management, bugtracking)

Currently PYTHIA 6.409:

- 74,800 lines of code (including comments/blanks)
- 580 page PYTHIA 6.4 Physics and Manual T. Sjöstrand, S. Mrenna and P. Skands, JHEP05 (2006) 026 [hep-ph/0603175]
- available on http://www.thep.lu.se/~torbjorn/Pythia.html
- together with sample main programs, old code, etc.

... but

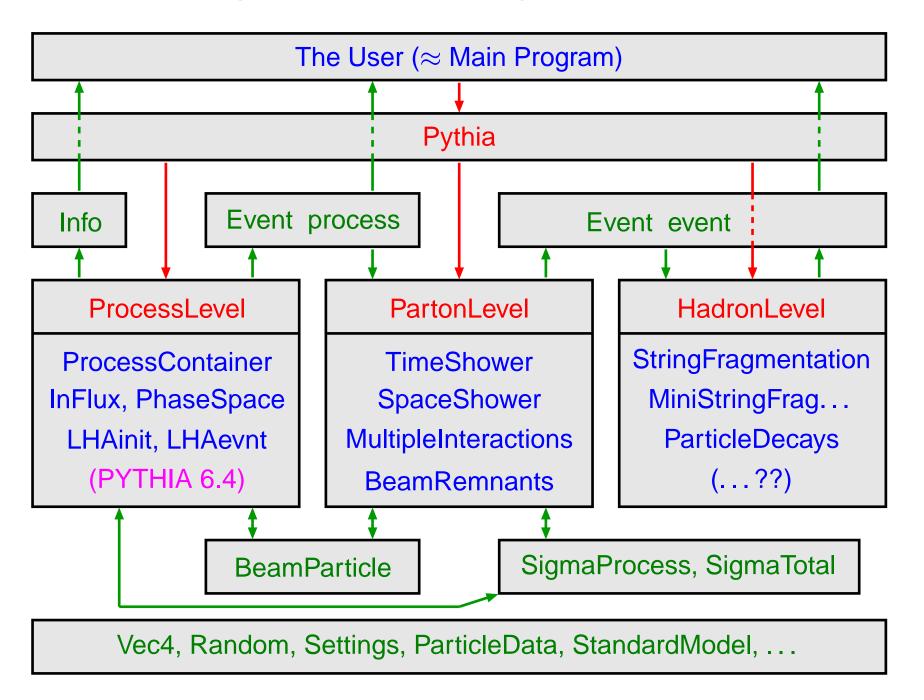
- only add, never subtract
- ⇒ has become bloated and unmanageable
- is in Fortran 77, so not understood by young people

PYTHIA 8: A fresh start

Problem: PYTHIA 7 stalled, no other manpower

Solution?: take a sabbatical and work "full-time"!

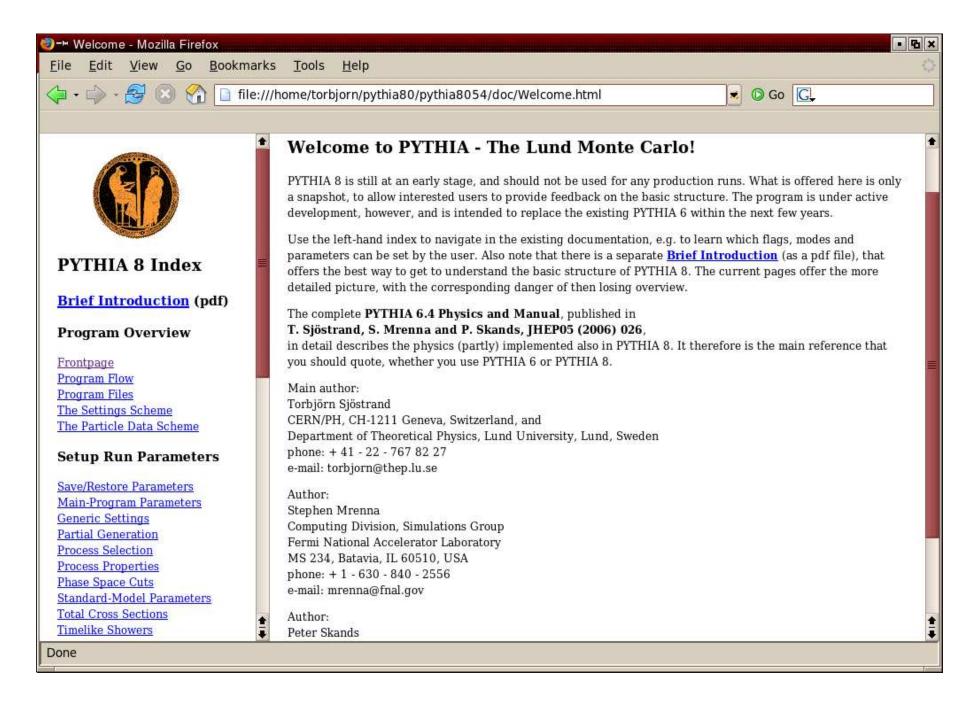
(⇒ baseline model, S. Mrenna & P. Skands join later ?)

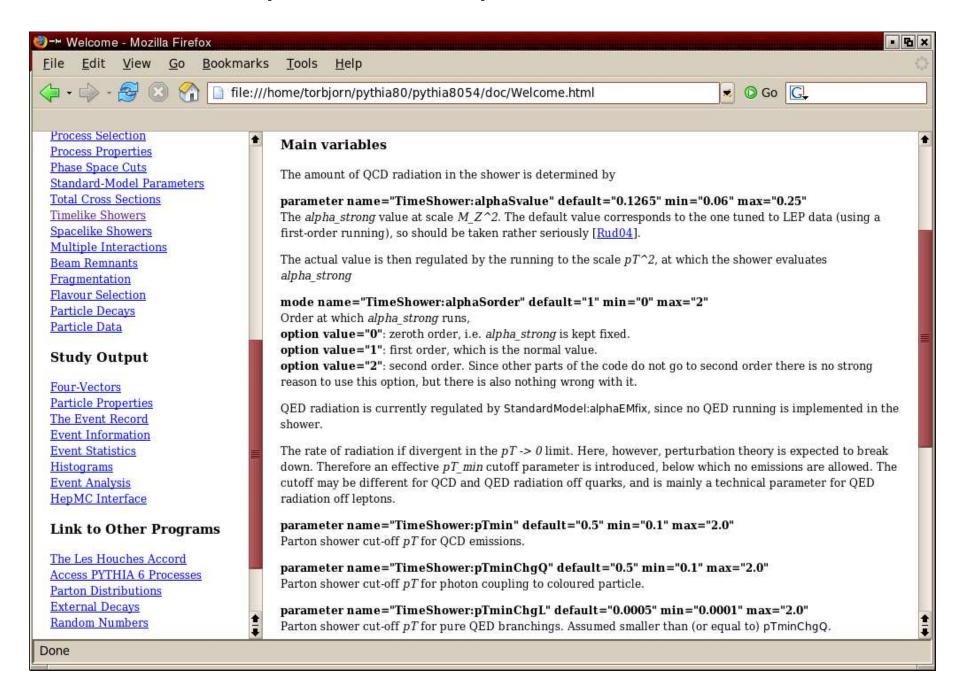

Tentative schedule (spring 2003):

time	date	processes	final states
0 =	1 Sept. 2004	_	
1 =	1 Sept. 2005	LHA-style input	incomplete draft
2 =	1 Sept. 2006	a few processes	complete, buggy(?)
3 =	1 Sept. 2007	more processes	stable, debugged

Objectives:

- clean up, keep the most recent models
- core program completely standalone, but
- Les Houches Accord style input central
 - interfaces to other libraries foreseen


Current PYTHIA 8 structure


Example of a main program

```
// File: main01.cc. The charged multiplicity distribution at the LHC.
#include "Pythia.h"
using namespace Pythia8;
int main() {
 // Generator. Process selection. LHC initialization. Histogram.
 Pythia pythia;
 pythia.readString("HardQCD:all = on");
 pythia.readString("PhaseSpace:pTHatMin = 20.");
 pythia.init( 2212, 2212, 14000.);
 Hist mult("charged multiplicity", 100, -0.5, 799.5);
  // Begin event loop. Generate event. Skip if error. List first one.
  for (int iEvent = 0; iEvent < 100; ++iEvent) {</pre>
    if (!pythia.next()) continue;
    if (iEvent < 1) {pythia.info.list(); pythia.event.list();}</pre>
    // Find number of all final charged particles and fill histogram.
    int nCharged = 0;
    for (int i = 0; i < pythia.event.size(); ++i)</pre>
      if (pythia.event[i].isFinal() && pythia.event[i].isCharged())
        ++nCharged;
    mult.fill( nCharged );
  // End of event loop. Statistics. Histogram. Done.
 pythia.statistics();
  cout << mult;</pre>
 return 0;
```

Online manual \Longrightarrow GUI??

Example: timelike parton showers

Hard-process generation

Currently limited selection implemented internally, but can use Fortran PYTHIA 6 library transparently via LHA interface.

Can also use Les Houches Accord for any other hard process, input via runtime C++ or Fortran interfaces or via LHEF files.

Internal processes (parts still missing for some):

ProcessGroup	ProcessName	
SoftQCD	minBias, elastic, singleDiffractive,	
	doubleDiffractive	
HardQCD	gg2gg, gg2qqbar, qg2qg, qq2qq, qqbar2qqbarNew, qqbar2gg, gg2ccbar, qqbar2ccbar, gg2bbbar, qqbar2bbbar	
PromptPhoton	qg2qgamma, qqbar2ggamma, gg2ggamma,	
	qqbar2gammagamma, gg2gammagamma	
WeakBosonExchange	ff2ff9gmZ, ff2ff9W	
WeakSingleBoson	ffbar2gmZ, ffbar2W	
WeakDoubleBoson	ffbar2ZW, ffbar2WW	
WeakBosonAndParton	qqbar2Wg, qg2Wq, ffbar2Wgm	
Тор	gg2ttbar, qqbar2ttbar, qq2tq9W	
SUSY	qqbar2chi0chi0	

Progress report and future plans

- * August 2005, 12 month mark with 8.040: no hard processes, simplified machinery for rest, as planned (!)
- \star Then unforeseen interruption for $\sim 1/2$ year
- ★ Back at CERN since April 2006, progressing again (summer slowly)
- ★ September 2006, 18 month mark with 8.060: basic structure, utilities, process machinery and some hard processes, LHEF, SLHA, . . .
- Oct 2006: Decays: update tables (PDG2006, c&b from DELPHI and EVTGEN/LHC-B), new matrix elements, selection, . . .
- Nov 2006: Hadronization: L = 1 mesons, popcorn baryons, . . .
- Dec 2006: Multiple Interactions: more processes, ...
- Jan 2007: Showers: photons, . . .
- Feb 2007: Showers & MI: interleave FSR with ISR and MI, LHAPDF, ...
- Mar 2007: Showers & MI: colour flow, reconnections, . . .
- * March 2007, 24 month mark with 8.080 (?): useful version
- ★ 3rd year: more processes, resonance decays, GUI?, official release
- ⋆ Debugged and tuned by LHC startup 2008 (??)
- ★ Overtaking Fortran version usage by 2009 (???)

Trying It Out

- Download pythia8060.tgz from
 http://www.thep.lu.se/~torbjorn/Pythia.html, link "Future"
- Unzip and expand with tar xvfz pythia8060.tgz
- Move to the thus created pythia8060 directory
- Follow the README instructions (edit links to PYTHIA 6, HepMC)
- ullet make will compile in \sim 4 minutes (half for PYTHIA 6)
- The pythia8060.pdf file contains an introduction to the program
- Open doc/Welcome.html in a web browser for the full manual (in the future: GUI with xml + Javascript?)
- The examples subdirectory contains 17 sample main programs (make mainNN and then mainNN.exe > outfile)

Makefile, install procedure & HepMC interface by Mikhail Kirsanov. Yesterday: updates, now with both shared and archive libraries. For 8.070 by end of year?