

GBAR status report 2018

Principle

- $\overline{H}^+ = \overline{p} e^+ e^+$
- Sympathetic cooling with Be+ \rightarrow 10 μ K
- Photodetachment of e⁺
- Time of flight (h = 10 cm $\rightarrow \Delta t$ = 0.14 s)

Beam production

- instead of 3-body process with 2 e⁺
- use Ps = e⁺e⁻, twice
- excite Ps (n=3)

March 2017

111

CERN-SPSC-22 Jan 2019

(anti)proton drift tube decelerator

10 keV → 722 ns/m

First beam July 20 2018

Beam spot size 3x3 mm @ target 95% efficiency

What GBAR is capable of.

Beam off centered by 5 mm

Beam monitors are essential to steer the beam

The H⁻ source would have been a valuable tool to this aim (5 s instead of 110 s repetition rate)

13

Recent Results from Commissioning

Observation of antiproton beams at extraction with h=1

• Profiles in the GBAR line

- □ Acquisitions with second monitor LNE.BSGWA.5020 in GBAR line
- Beam sizes with voltages of first two quads of line set to zero
 - $\beta_{\rm H} = 6$ m gives rms emittance $\varepsilon_{\rm H} = 4.1$ um (slightly overestimated without taking dispersion into account)
 - $\beta_V = 4 \text{ m gives rms emittance}$ $\epsilon_V = 1.5 \text{ um}$

Recent Results from Commissioning Observation from the very last day with beam in 2018

- Higher harmonics h=2 and h=4 finally possible after upgrade of RF control
 - \square Main motivation losses after re-bunching with >1 10⁷ antiprotons with short bunches
 - \Box Of interest for observation along 2nd ramp (increased efficiency not expected)

- \Box Whole cycle with beam combining two acquisitions (2nd with slightly higher intensity)
 - Improved efficiency (close to 50%)

Recent Results from Commissioning

Observation from the very last day with beam in 2018

Position pick-up sum signals

- From sum signal of electro-static pick-ups (10 % uncertainty of calibration)
 - □ 3.7 10⁷ antiprotons injected (consistent with data from AD running very well
 - □ Four bunches, each with 0.43 10⁷ antiprotons at extraction
 - => Efficiency about 46 %
- Total intensity estimated by "beam current transformer" in line about 1 10⁷ antiprotons

GBAR Meeting, 28th November 2018

C. Carli on behalf of the AD/ELENA team(s)

Proton beam

Will be used during LS2 to study

 $p + P_s \rightarrow H + e^+$ and

$$H + P_{\rm s} \rightarrow H^- + e^+$$

pumping & restrictions \rightarrow 10⁻⁸ mbar

30 μ A protons separated from H₂⁺/H₃⁺/neutrals by Wien filter

electron linac

operation point set using a magnetic spectrometer

- Tungsten target \rightarrow 1 MeV positrons
- Tungsten mesh moderator \rightarrow 3 eV positrons

Measuring positron flux

e⁺ *beam line exiting the bunker*

Positron flux

- Ran periodically during 2018
- $3 \times 10^5 e^+$ / pulse initially
- 10% loss per bunch from 10 to 130 Hz
- At end of year $2 \times 10^7 \text{ e}^+/\text{ s}$ (100 Hz)
- Final commissioning in 2019
- Extrapolation to 300 Hz \rightarrow 6 × 10⁷ e⁺/s
- Will improve moderation (x 2 ?)
- Goal $3 \times 10^8 \text{ e}^+/\text{ s}$

Buffer Gas trap

N₂ with CO₂ cooling gas present trapping efficiency $5 \pm 0.5\%$ (goal 20-25%) lifetime 0.6 s (stage 1) and 14s (stage 3) $\Delta E = 130 \text{ meV}$ (stdev) 80 bunches from linac stacked and transferred

High field positron trap

saturation above 100 stacks from buffer gas trap with present potential well shape

With linac at 100 Hz \rightarrow 1 x 10⁸ e⁺ in 100 s <u>Goal:</u>

accumulate 3 x 10^{10} e⁺ in 110 s

e⁺ lifetime in trap > 20 min plasma diameter 80 μ m using rotating wall (3 MHz / 1 V)

First ortho-positronium signal at GBAR@CERN

2.5

3.0

Time (µs)

Target region in the reaction chamber

Ps excitation laser

CW TiSa seeder, 260 mW at 820 nm

TiSa oscillator, >5 mJ at 820 nm P. Pérez

CW TiSa seeder and oscillator cavity 5 mJ @ 820 nm after ampli 26 mJ 6 mJ @ 410 nm

<u>LS2</u>:

- use 1S-3S to ionise fully Ps and study its properties
- 1S-3D to measure enhancement of cross-section

Beam distribution

P. Pérez

$\overline{\mathrm{H}}$ Lamb shift

TOF & Tracker

 \rightarrow 80 ps resolution allows to distinguish up-down particles

Test micromegas from ETHZ (x5 multiplexing) 19 XY planes 50 cm x 50 cm from Irfu and ETHZ were tested successfully with DREAM

TOF planes 170 cm × 10cm × 5cm

test tracker

meanwhile in the institutes

- Be⁺ Doppler cooling

- H_2^+/B_e^+ (9/2 mass ratio) and B_e^+/Sr^+ (87/9) sympathetic cooling achieved
- Ca⁺ Doppler
- Ca⁺ ground state Raman side band achieved
- Ca⁺-Be⁺ ion pair ground state Raman side band ongoing

dark ion in capture trap $(H_2^+ \text{ or } H_3^+)$

antiproton magnet and trap

Plans for LS2

- Measure H/H⁻ production rates using protons \rightarrow optimise processes
- Measure Lamb shift on hydrogen
- Install (anti)proton trap and recycling of (anti)protons
- Install free-fall chamber and cooling/photodetachment lasers
- Cool protons in Be⁺?
- Install detection of free fall
- Centralised DAQ/control

antiprotons interacting in MCP

GBAR collaboration

M. Charlton,¹ J. Choi,² M. Chung,³ P. Cladé,⁴ P. Comini,⁵ P. Crivelli,⁶ P-P. Crépin,⁴ O. Dalkarov,⁷ P. Debu,⁵ L. Dodd,¹ A. Douillet,⁴ S. Guellati,⁴ J. Heinrich,⁴ P-A. Hervieux,⁸ A. Husson,⁹ P. Indelicato,⁴ G. Janka,⁶ S. Jonsell,¹⁰ J-P. Karr,⁴ K. Khabarova,⁷ B. Kim,² E-S. Kim,¹¹ S. Kim,² Y. Ko,¹² N. Kolachevski,⁷ T. Kosinsky,¹³ N. Kuroda,¹⁴ B. Latacz,⁵ H. Lee,² J. Lee,¹² A. Leite,⁵ E. Lim,¹¹ L. Liszkay,⁵ T. Louvradoux,⁴ D. Lunney,⁹ K. Lévêque,⁸ G. Manfredi,⁸ B. Mansoulié,⁵ M. Matusiak,¹³ G. Mornacchi,¹⁵ V.V. Nesvizhevsky,¹⁶ F. Nez,⁴ S. Niang,⁵ R. Nishi,¹⁴ S. Nourbaksh,¹⁵ K. Park,² P. Pérez,⁵ B. Radics,⁶ C. Regenfus,⁶ S. Reynaud,⁴ J-Y. Roussé,⁵ A. Rubbia,⁶ J. Rzadkiewicz,¹³ Y. Sacquin,⁵ F. Schmidt-Kaler,¹⁷ N. Sillitoe,⁴ M. Staszczak,¹³ B. Vallage,⁵ D-P. van der Werf,¹ A. Voronin,⁷ A. Welker,¹⁵ S. Wolf,¹⁷ D. Won,² S. Wronka,¹³ Y. Yamazaki,¹⁸ K-H. Yoo³