Machine Learning for Charged Particle Tracking

AIDA-2020, Topical Workshop on the Future of Tracking St Anne's College, 1-2 April 2019

Overview

- Introduce the challenge of charged particle trajectory.
- Collection of applications of machine learning for trackinglike problems.
- Covering some of the technical details, underlying the challenges and prospects.
- Many thanks to LHCb : P. Seyfert, ATLAS : D. Rousseau, R. Jansky, A. Salzburger, S. Amrouche, ALICE : R. Shahoyan, CMS : V. Innocente, F. Pantaleo Neutrino : R. Sulej, A Farbin, HEP.TrkX group for material and input.
- More at CTD19 https://indico.cern.ch/event/742793/

Tracking in a Nutshell

- Particle trajectory bended in a solenoidal magnetic field
- Curvature is a proxy to momentum
- Particle ionize silicon pixel and strip throughout several concentric layers
- Thousands of sparse hits
- Lots of hit pollution from low momentum, secondary particles

Seeding

Kalman Filter

⁴ single-sided

outer barrel layers

2 double-sided

outer barrel layers

4 inner barrel layers

- Explosion in hit combinatorics in both seeding and stepping pattern recognition
- Highly computing consuming task in extracting physics content from LHC data

Cost of Tracking

- Charged particle track reconstruction is one of the most CPU consuming task in event reconstruction
- Optimizations (to fit in computational budgets) mostly saturated
- Large fraction of CPU required in the HLT. Cannot perform tracking inclusively at CMS and ATLAS.

Fast Hardware Tracking

- Track trigger implementation for Trigger upgrades development on-going
- Several approaches investigated
- **Dedicated hardware is the key** to fast computation.
- Not applicable for offline processing unless by adopting heterogeneous hardware.

Firmware Implementation - Bin

- Each bin represents a ${}^{q}\!/_{p_{T}}$ column in the HT array

See https://ctdwit2017.lal.in2p3.fr/

Outline

I.Challenges and similarities with machine learning

II.Applications of machine learning for tracking

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

6

Part I

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

7

Similarities and Challenges

- Particle tracking is an active field in data science
- Making a track is called pattern recognition
- Tracking data is much sparser than regular images
- Tracking device may have up to 10M of channels
- Underlying complex geometry of sensors
- Unstable detector geometry ; alignment
- Not the regular type of sequences
- Defining an adequate cost function
- A solution must be performant during inference

Particle Tracking in Biology

https://www.ncbi.nlm.nih.gov/pubmed/24441936

Table 1 | Participating teams and tracking methods

		Detection			Linking								
Method	Authors	Prefilter	Approache	s Remarks	Principle	Approaches	Remarks	Dim.	Refs.				
1	I.F. Sbalzarini Y. Gong J. Cardinale	-	М, С	Iterative intensity-weighted centroid calculation	Combinatorial optimization	MF, MT, GC	Greedy hill-climbing optimization with topological constraints	2D & 3D	32				
2	C. Carthel S. Coraluppi	Disk	М, Т	Adaptive local-maxima selection	Multiple hypothesis tracking	MF, MT, MM	Motion models are user specified (near-constant position and/or velocity)	2D & 3D	33,34				
3	N. Chenouard F. de Chaumont JC. Olivo-Marin	Wavelets	М, Т	Maxima after thresholding two-scale wavelet products	Multiple hypothesis tracking	MF, MT, MM, GC	Motion models are user specified (near-constant position and/or velocity)	2D & 3D	35–37				
4	M. Winter A.R. Cohen	Gaussian, median and morphology	M, T, C	Adaptive Otsu thresholding	Multitemporal association tracking	MF, MT, GC	Post-tracking refinement of detections	2D & 3D	38,39				
5	W.J. Godinez	Laplacian of Gaussian or	М, Т,	Either thresholding + centroid	Kalman filtering + probabilistic	MF, MM	Interacting multiple models using	2D & 3D	29,40				
6	K. Rohr Y. Kalaidzidis	Gaussian fitting Windowed floating mean background subtraction	F, C T, F	or maxima + Gaussian fitting Lorentzian function fitting to structures above noise level	data association Dynamic programming	a	Scenario 1	Scenari	02	Scenario 3	Scenario 4	b De	nsity
7	L. Liang J. Duncan H. Shen Y. Xu	Laplacian of Gaussian	M, T, F	Gaussian mixture model fitting	Multiple hypothesis tracking	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 94 2 1 - 12 2 1 - 12			iv		
8	K.E.G. Magnusson J. Jaldén H.M. Blau	Deconvolution	M, T, F	Watershed-based clump splitting and parabola fitting	Viterbi algorithm on state-space representation			Post					
9	P. Paul-Gilloteaux	Laplacian of Gaussian or Gaussian filtering	M, T, F	Either maxima with pixel precision (2D) or thresholding + Gaussian fitting (3D)	Nearest neighbor + global optimization	ics		a fala di					
10	P. Roudot C. Kervrann F. Waharte	Structure tensor	T, F	Histogram-based thresholding and Gaussian fitting	Gaussian template matching	Dynam	VI.	Niese		VII-	vill	L	ow
11	I. Smal E. Meijering	Wavelets	M, F, C	Gaussian fitting (round particles) or centroid calculation (elongated particles)	Sequential multiframe assignment								
12	JY. Tinevez S.L. Shorte	Difference of Gaussian	M, T, F	Parabolic fitting to localized maxima	Linear assignment problem	25		118 6		2 Contractions	Con Contraction		
13	J. Willemse K. Celler G.P. van Wezel	Gaussian and top hat	т, с	Watershed-based clump splitting	Nearest neighbor		al an state of the	3.20		Start Start	22250	a sale	
14	HW. Dan YS. Tsai	Gaussian, Wiener and top hat	т, с	Morphological opening-based clump splitting	Nearest neighbor + Kalman filtering	_						1.00	- 1. ala - 1

GC, gap closing.

High

9

Deep Kalman Filter

Deep Kalman filters

Initial state: Action-transition Emission:

$$z_{1} \sim \mathcal{N}(\mu_{0}, \Sigma_{0})$$

ion: $z_{t} \sim \mathcal{N}\left(G_{\alpha}(z_{t-1}, u_{t-1}), S_{\beta}(z_{t-1}, u_{t-1})\right)$
 $x_{t} \sim \Pi(F_{\kappa}(z_{t}))$

Optimize *jointly* over generative model $p_{\theta}(\vec{x}|\vec{u})$ and variational approximation $q_{\phi}(\vec{z}|\vec{x},\vec{u})$

Stochastic backpropagation (Rezende et al. 2014, Kingma & Welling, 2014)

Uri Shalit at DSHEP2016

https://indico.hep.caltech.edu/indico/conferenceDisplay.py?confld=102

Kalman Filter in Ballistic

- Available methods to track multiple objects using kalman filters
- Deal with "splitting objects"
- Deal with crossing trajetories
- More complexe KF, more computationally intensive ...

Undisclosed contribution during DS@HEP 2016

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

Pattern Recognition or not

HEP charged particle tracking in a nutshell

Seeding

Track Building

Track Fitting

- → Track building = pattern recognition HEP jargon
- → Finding the list of hits belonging to a track ...
- Finding the pattern of hits left by a charged particle in the detector ...
- →Not the "usual" data science pattern recognition

Data sparsity

13

High Dimensionality

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

Complex Geometry

Not the typical data geometry for data science

Mis-aligned Geometry

Mechanical stress (magnetic field, cooling, ...) does modify the geometry in time

Hit Sequencing

- Hits leave on modules, modules leave on layer, layers are traverse along time.
- * "Natural" ordering when trying a hit fitting
- Not so "natural" when doing track building, and hit combinatorics

Figure of Merit

- A combination of resolution, fake rate, efficiency, ...
- Tracking has been improved within a given a method (CKF+CTF) and within processing time constraints
- Not all tracks are equal. Not all features matter
 High dimensional cost function
- No golden metric for "tracking" in a general purpose detector
- Things would be done differently, if the purpose was different
- Remember the breaking point is computation requirement
 Not something that folds in a cost function ...

Computation Performance

- Worse than quadratic
- PU200 is far off the chart.
- Memory consumption not necessarily an issue

Part II

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

Machine Learning in Tracking

- Seeding and Clustering
- Pattern recognition
- Track Selection
- Track Parameters
- Vertexing

Seeds and Clusters

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

Tracking In Dense Environment

(a) Single-particle pixel clusters

(b) Merged pixel cluster

Converging tracks are likely in boosted jets and jets dense of charged particles. Degraded performance

https://arxiv.org/abs/1704.07983 https://link.springer.com/article/10.1140/epjc/s10052-017-5225-7

Cluster Splitting

Feed forward NN in three stages

- Determines the category 1-track, 2-tracks, 3-tracks
- Determines the n-crossing positions regression
- Determines the uncertainties as a multi-bin categorization

2 hidden layers fully connected NN with batch norm

ATL-PHYS-PUB-2015-006 https://link.springer.com/article/10.1140/epjc/s10052-017-5225-7

Seed and Cluster Filtering

- NN classifier to distinguish good and bad clusters in the hough space during forward tracking
- Classifier to distinguish good and bad T-seed (Use of the bonsai BDT https://arxiv.org/abs/1210.6861) during downstream tracking

Seed Cleaning

• Categorization of hits doublet using the pixel cluster shapes as input

• Promising at limiting the combinatorial explosion

https://indico.cern.ch/event/567550/contributions/2638698/

Seed Finding in Jets

- Predict tracklets parameters from raw pixels using CNN
- Approaching the maximum performance

https://indico.cern.ch/event/742793/contributions/3274301/

Track Finding

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

29

Non Parametric Functional Kernels

Work in progress : S. Amrouche. T. Golling, A. Salzburger, J. Pilz https://indico.cern.ch/event/577003/contributions/2444883/

TPC 2x2D to 3D

XV-view

3D imaging: Wire-Cell http://www.phy.bnl.gov/wire-cell/bee/

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

31

TPC Activity Segmentation

- Challenge to code explicitly
- Almost text-book example of de-noising AE
- Achieved with CNN

Flavor Segmentation

input: 2D ADC

CNN output: EM-like (blue) / track-like (red)

MC truth: EM-like (green) / track-like (red)

33

TrackML Challenge

https://www.kaggle.com/c/trackml-particle-identification

	Develop Sept. 7, 2	ment 018, midnight UTC		Final March 12, 2019, 11:59	p.m. UTC	Competition Ends March 12, 2019, 11:59 p.m. UTC				
Learn the Details	Phases	Participate	Results	Public Submissions	Forums 🔁					
Overview		Welcor	ne!							
Evaluation		This competitions is an official NeurIPS 2018 competition.								
Terms and Conditions		To explore what our universe is made of, scientists at CERN are colliding protons, essentially recreating mini big								
Prizes		bangs, and meticulously observing these collisions with intricate silicon detectors. Event rates have already reache								
Sponsors, organisers and International Advisory		hundreds of millions of collisions per second, meaning physicists must sift through tens of petabytes of data per year. And, as the resolution of detectors improve, ever better software is needed for real-time pre-processing and filterior explored in a second s								
Committee	,	Meeting of the most proming events and periods call of the second set of the product and the product and the second set of the second set								
Timeline										
Step by step										
News										
Contact		<i></i>		an an air an		TO ADAMA ARA ARA				

https://competitions.codalab.org/competitions/20112

- First : Top Quarks
 - Johan Sokrates is an industrial Mathematics master student
 - Pair seeding, triplet extension, trajectory following, track cleaning, all with machine learning for quality selection
- Second :
 - Pei-Lien Chou is a software engineer in image-based deep learning in Taïwan
 - Machine learning to predict the adjacency matrix
- Thirds :
 - Sergey Gorbunov is a physicist, expert in tracking
 - Triplet seeding, trajectory following
 - Jury Innovative prize
 - Yuval Reina is an electronic engineer and Trian Xylouris is an entrepreneur
 - Marginalized Hough transform with machine learning classifier

Jury Clustering prize

- Jean-François Puget CPMP is a software engineer at IBM. He is both competition and discussion Kaggle grandmaster
- **DBSCAN clustering** with iterative Hough transform
- Jury Deep Learning prize
 - Nicole and Liam Finnie are software engineers
 - DBSCAN seeding, trajectory following with LSTM
- **Organization pick**
 - Diogo R. Ferreira is a professor/researcher, focusing on data science and nuclear fusion
 - Pattern matching
- Workshop at CERN in Spring this year with presentation of full details

HEP.TrkX Approaches

https://heptrkx.github.io/

Graph Network

Input Network

- $^{\succ}$ Transforms from hit features (r, ϕ , z) to the node latent representation (N for 8 to 128)
- Dense : 3→...→N

Edge Network

- Predicts an edge weight from the node latent representation at both ends
- Dense : N+N→...→1

Node Network

Predicts a node latent representation from the current node representation, weighted sum of node latent representation from incoming edge, and weighted sum

NodeNet

• Dense : N+N+N \rightarrow ... \rightarrow N

- Tracker hits form graph, using simple geometrical constraints
- Graph neural network and message passing network achieve classification of good edges
- Promising approach on TrackML dataset at 200PU

https://indico.cern.ch/event/742793/contributions/3274328/

Track Selection

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

Track Selection

NN classifier implemented to select good from bad tracks in forward tracking and downstream tracking

http://cds.cern.ch/record/2255039

Track Quality with DNN

Simplifies and improves track selection within the scope of CMS iterative tracking

https://indico.cern.ch/event/658267/contributions/2813693/

Track Parameters

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

40

Track Uncertainties

- LSTM predicts many track candidates
- Model predicts a covariance matrix for which there is no ground truth, but is used with the modified loss function

$$L(\boldsymbol{x}, \boldsymbol{y}) = \log |\boldsymbol{\Sigma}| + (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))$$

https://heptrkx.github.io/

Impact Parameters

• LSTM model supplements a Kalman Filter approach

 Improve resolution and estimation of track impact parameters in LHCb

https://indico.cern.ch/event/587955/contributions/2935754/

Vertexing

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

43

Decay Point Identifier

- CNN slightly outperform the classical approach
- Much less complication in programming the vertex finding

Vertexing with CNN

https://indico.cern.ch/event/567550/contributions/2629737/

45

uncertainty [mm]

Hybrid Vertexing

- Form a track density over longitudinal axis using Gaussian kernels
- Learn vertex position from local longitudinal density
- Similar performance with traditional approach.

• Advantage of ML in deployment

https://indico.cern.ch/event/708041/contributions/3269692/

Summary

- Charged particle tracking is a computationally intensive task
- Specific challenges in applying machine learning in High Energy Physics
- Machine learning is already applied at several levels to cope with the task complexity.
- Active R&D in tracking & vertexing using machine learning

Extra Material

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

48

Where ML Can Fit

- Signal de-noising (less hit, less combinatorics)
- Making of clusters of hits (less merged, less ambiguity)
- Hits quality (less noise, less combinatorics)
- Seed making (faster composition of tracklets)
- Seed cleaning (less seed, less track making)
- → KF pattern recognition
 - → In the transport, the update to the new state: deep KF
 - Selecting the best hit candidate
- → Pattern recognition
 - Seeded track making
 - Un-seeded track making
- → Track fitting
 - Track parameters regression
 - Track parameter reconstruction
- Any combination with other alternative methods (see next slides)
- → Any new idea from this workshop ...

ML in Tracking

- Hopfield network
- Tracking in dense environment in ATLAS
- Seed cleaning in CMS
- Activity segmentation in TPC test beam
- Activity segmentation for neutrino flavor ID
- Muon decay point identifier
- Track selection in LHCb and in CMS
- Tracker hit cluster selection in LHCb
- Non-parametric functional regression
- Seeded track finding in simplified model
- Track parameters estimation using LSTM
- Pattern recognition with sequence-2-sequence
- Pattern recognition with graph network

•

Seeded Pattern Prediction

- Hits on first 3 layers are used as seed
- Predict the position of the rest of the hits on all layers

LSTM ≡ Kalman Filter

52

Seeded Pattern Recognition Insights

- For a simplified track models, predicting the track pattern from the seed works
 - In 2D and 3D
 - With some level of noise
 - > With other tracks present
 - On layers with increasing number of pixels
- Several other architectures tried
 - Convolutional neural nets (no LSTM)
 - Convolutional auto-encoder
 - Bi-directional LSTM
 - Prediction on next layer with LSTM

Tracking RAMP at CtD

S. Farrell : Best solution in the Machine Learning category https://indico.cern.ch/event/577003/contributions/2509988/

- Down-sampling layer to 100 bins
- LSTM for hit assignment
- 92% efficiency
- Robust to holes and missing hits

- Increased granularity in "road"
- LSTM for hit assignment
- 95% efficiency

Track Parameters Measurement https://heptrkx.github.io/

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

Scene Captioning

Karpathy, Fei-Fei, CVPR 2015

Compose tracks explanation from image

Track Parameter Estimation

Multi-Track Prediction with LSTM

- Hit pattern from multiple track processed through convolutional layers
- LSTM Cell runs for as many tracks the model can predict.

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

Prediction Track Covariance

Model is modified to predict a covariance matrix for which there is no ground truth, but is used with the modified loss function

$$L(\boldsymbol{x}, \boldsymbol{y}) = \log |\boldsymbol{\Sigma}| + (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))$$

Track Parameters Uncertainty

Representation of track slope, intersect and respective uncertainties

Pattern Recognition / Seeding https://heptrkx.github.io/

Machine Learning in Tracking AIDA-2020, J.-R. Vlimant

61

Text Translation

[Sutskever et al. NIPS 2014]

- Multiple layers of very large LSTM recurrent modules
- English sentence is read in and encoded
- French sentence is produced after the end of the English sentence
- Accuracy is very close to state of the art.

From sequence of hits on layer to sequence of hits on track

Pattern Recognition

Pattern Recognition with LSTM

- Input sequence of hits per layers (one sequence per layer)
 - One LSTM cell per layer
- Output sequence of hits per candidates
 - Final LSTM runs for as many candidates the model can predict

- Still work in progress
- Restricted to 4 layers (with seeding in mind)
- Work to some extend

