
FuncX: A Function Serving Platform for HPC

Ryan Chard

28 Jan 2019

Outline
- Motivation
- FuncX: FaaS for HPC
- Implementation status
- Preliminary applications

- Machine learning inference
- Automating analysis
- Metadata extraction

Next gen data
Data volumes and velocities are
exploding, overwhelming local resource
capabilities

Scientific results from almost all domains
are increasingly computationally
dependent

Instrument improvements mean a flood
of new problems and users that could
benefit from HPC

HPC Mismatch
HPC often designed for extreme-scale workloads

Analysis requirements are often bursty

- SEMs don’t run 24/7
- Beamtime is rare
- Samples must be swapped
- Funding comes and goes

New paradigms are increasingly interactive

Growing need to accommodate analysis at scale, on-demand

Barriers to HPC
HPC environments aren’t user friendly

- Variety of platforms (architectures and accelerators)
- Steep learning curves (package management)
- Different interfaces (Slurm/PBS/Cobalt)
- Difficult to acquire resources (in a timely manner)
- Numerous modalities and frameworks for scaling
- Can’t hold resources without work

Small, on-demand tasks are not necessarily a priority

However, thousands of small tasks are a big problem

Serverless computing
Serverless computing is revolutionizing
business IT

Function as a Service (FaaS)

- Pick a runtime (python/JS/R etc.)
- Write function code
- Run at any scale

Low latency, on-demand

Can compose functions to solve complex
problems

Function serving for Science
1. Remove barriers, simplify usage, and federate

access to HPC resources

2. Support a new generation of users and
applications

3. New opportunities for optimization

1. Remove barriers
FaaS can make HPC accessible

- Abstract compute, only expose function code
- Containerized runtimes encapsulate dependencies
- Libraries of functions promote sharing and reuse
- FaaS service can provide secure, programmatic

access

2. Support new applications
FaaS enables new applications for HPC

- Short duration and/or low-latency
tasks
- Real-time usage
- Guide experiments
- Interactive computing
- ML inference
- Stream processing

3. Optimization opportunities
FaaS can improve usage and utilization

- Locality aware function placement
- Send queries to datasets
- Allow multiple functions to share caches/datasets

- Share runtimes for rapid serving
- Use backfill queues to increase resource

utilization
- Use HPC investments for new problems

FuncX: A FaaS platform for HPC

FuncX: FaaS for HPC
Enable secure, isolated, on-demand
function serving on HPC resources for the
masses

Abstract underlying infrastructure

Establish a library of functions,
encouraging reuse and reproducibility

Functions and Runtimes
Functions

- Small executable codes
- Short duration tasks
- Stateless
- Invoked on-demand
- Accept input (JSON/binary),

return output

Runtimes

- Container of libraries and
dependencies

- Isolates function execution
- Serve multiple functions

with shared dependencies
- “Warm” runtimes for rapid

serving

Executing functions with Parsl
Parallel Scripting Library for Python

Annotate Python scripts with Parsl

directives

Dynamically intercepts function

invocation and creates DAG with data

dependencies

Manages the execution of the script on

clusters, clouds, grids, and other resources

Supports secure authentication (2FA)

Parsl
Unique executors to meet application requirements

- High throughput (HTEX)
- Extreme scale (EXEX)
- Low latency (LLEX)

Abstracts resource integration

Parsl scaling
Weak scaling: 10 tasks per
worker. Task duration from 0 to
1s.

HTEX and EXEX outperform
other Python-based approaches

HTEX and EXEX scale to 1K* and
8K* nodes, respectively, with
>1K tasks/s

Parsl low latency executor
LLEX achieves low
(3.47ms) and consistent
latency

HTEX (6.87ms) and EXEX
(9.83) are less
consistent

All executors are faster
than IPP (11.72ms) and
Dask (16.19ms)

Data management: Globus
Moving both data and runtimes

Auth and logging

- Identity management
- Authentication

Data staging

- Transfer to endpoints
- Stage to runtimes

FuncX Prototype

FuncX prototype
- Web service

- Interact with FuncX

- Site manager
- Deploy at HPC site
- Manage runtimes at site

- Node manager
- Manage functions within a

runtime

Implementation status: ongoing

Site
Manager

Function &
Runtime

Repository

REST

CLI SDK

FuncX Web Service

Key
Function

Runtime

Parsl
Executor

Node
Manager

Node
Mgr

Node
Mgr

HPC site

Web service
REST API to create, invoke, delete functions

Dynamically create runtime containers

- Record requirements to determine reuse
- Dockerize -> ECR -> singularity -> site managers

Relies on Globus Auth for identity and access management (IAM)

Parsl interchanges route jobs to active site managers

Log usage for user accountability

- Understand apps we are running

Function &
Runtime

Repository

REST

CLI SDK

FuncX Web Service

Parsl
Executor

Site manager
Runtime management

- Maintain local runtime repository
- Deploy and manage runtimes
- Pass serialized functions and inputs into runtimes

for execution
- Spin down “used” runtimes when idle
- Restrict access for “used” runtimes

Currently assume one site manager

- Single-, not multi-tenant
- Functions run as my own user on ALCF’s Cooley

Site
Manager

Key
Function

Runtime

Node
Manager

Node
Mgr

Node
Mgr

HPC site

Node manager
*** Currently under development ***

Deployed within a runtime to manage/execute functions

Responsible for creating sandboxes and instantiating functions

- UIDs and directories or linux containers...

Stage data to functions

Manage local cache

Site
Manager

Node
Mgr

Node
Mgr

Key
Function

Runtime

Node
Manager

HPC site

Preliminary work

Data and Learning Hub for Science

Globus Automate

Extract

DLHub

•

•

•

•

DLHub
▪
▪
▪
▪
▪
▪

DLHub

DLHub and FuncX
Vanguard model dependencies
necessitate containerization

Real-time usage relies on low-latency

Serving works well on kubernetes

Training requires HPC resources

FuncX fulfills both inference serving and
model training requirements; manages
servables (runtime + shim); and enables
low latency invocation

Automate
Distributed research data management
automation

Construct “pipelines” of data management
tasks, e.g.:

- Transfer
- Catalog
- Set ACLs
- Share

Can be used for automating end-to-end
analysis pipelines

Neuroanatomy
UChicago’s Kasthuri Lab study brain aging and disease

- Construct connectomes -- mapping of neuron connections
- Use synchrotron (APS) to rapidly image brains (and other things)
- Given beam time once every few months
- Generate segmented datasets/visualizations for the community
- ~20GB/minute for large (cm) unsectioned brains
- Perform semi-standard reconstruction on all data across HPC resources

Neuroanatomy automation

1. Imaging 2. Acquisition 3. Pre-processing

5. User
validation
& input

6. Reconstruction

8. Visualization

9. Science!

Lab Server 1 Lab Server 2

7. Publication

APS

4. Preview & Centre

ALCF

JLSEUChicago

Neuroanatomy automation
Web
form

User input

Search

Ingest

Share

Set policy

Identifier

Mint DOI

FuncX

Auth

Get
credentials

Automate

Run job

Describe

Get
metadata

Transfer

Transfer
data

FuncX

Run job

Transfer

Transfer
data

Automate and FuncX
Secure and reliable remote execution platform

Containerized reconstruction functions can be reused between datasets

Enables reproducibility and sharing of pipelines between beamlines

On-demand analysis when the beam is running

Abstracts HPC integration for domain scientists

Extract
File systems and data repositories are often
inconsistent and messy

Extract aims to drain the data swamp

Analyze files, extract metadata, catalog data

Dynamic pipelines to maximize searchable
metadata extracted

- Modular extractors are pipeline steps
- Apply many extractors to each file
- Different files require different extractors

- Prioritize extractors by expected yield

Extract and FuncX
Running at scale (PB store) requires invocation at data

FuncX manages deployment and invocation of extractors

Can be run as compute is available (backfill)

Run in response to data events (files created/changed)

Push extractor functions to arbitrary machines

Future work
Complete node manager implementation

Identify new use cases (and requirements)

Investigate multi-tenant solutions

Thanks

Questions, comments, use cases?

rchard@anl.gov

