Hadron production measurements for improving neutrino flux predictions with the NA61/SHINE spectrometer

Simona Ilieva
for the NA61/SHINE collaboration
Sofia University St. Kliment Ohridski

August 22-28, 2019
19th Lomonosov Conference on Elementary Particle Physics
Outline

✓ introduction

✓ NA61/SHINE experiment

✓ measurements with thin and thick targets

✓ future plans - beyond 2020

✓ summary
Hadron production measurements for neutrino experiments related to accelerator-generated neutrino beamlines. NA61/SHINE is capable of measuring these interactions!
NA61/SPS Heavy Ion and Neutrino Experiment

- fixed-target experiment at CERN’s SPS
- operating with ion and hadron beams in range 13 - 400 GeV/c
- momentum, charge and dE/dx measurements provided by TPC tracking system
- particle ID with TPC and TOF detectors
- facilitating both thin and replica target measurements
Reference hadron production measurements

Thin target - a few % of nuclear interaction length λ

- p, π^\pm, K^\pm beams on thin C, Be, Al, etc. targets
- examine single interactions:
 - inelastic and production cross-sections
 - differential cross-sections $\left(\frac{d^2\sigma}{dp d\theta} \right)$ of produced hadrons

Thick target (replica target) - a few λ

- p beams on replica targets
- study multiple interactions inside target:
 - differential hadron multiplicities on target surface
 - beam survival probability and related production cross-section
 $$P_{\text{survival}} = e^{-Ln\sigma_{\text{prod}}}(L \text{ target length}; n \text{ number of atoms per unit volume})$$

T2K replica target:
an identical copy of the 90cm long graphite T2K target
$$L = 1.9\lambda$$
Results from p@31GeV/c on 2cm C target for T2K

✓ 2007: first measurements; 0.7M events
 - inelastic and production cross-sections and π^\pm spectra (Phys.Rev.C84 (2011) 034604)
 - K^0_S and Λ spectra (Phys.Rev.C89 (2014) 025205)

✓ 2009: 5.2M events
 - inelastic and production cross-sections and p, π^\pm, K^0_S and Λ spectra (EPJ C76 (2016) 84)

NA61/SHINE 2007 and 2009 cross-section results
Results from hadron+A interactions for Fermilab ν beams

✓ 2015 data:
 - inelastic and production cross-sections \cite{Phys.Rev.D98, No.5 052001 (2018)}

✓ 2016 data:
 - inelastic and production cross-sections for $p@60\text{GeV/c}$ on C, Be, Al and $p@120\text{GeV/c}$ on C, Be targets \cite{collaboration review}
 - inelastic and production cross-sections and p, π^{\pm}, K^{\pm}, K_S^0 and Λ spectra in $\pi^+@60\text{GeV/c}$ on C and Be targets \cite{collaboration review}

✓ 2017 data:
 - first data set with forward TPCs \cite{calibration}

<table>
<thead>
<tr>
<th>2015</th>
<th>reaction</th>
<th>events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p+C$ 31 GeV/c</td>
<td>0.4M*</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ + C$ 31 GeV/c</td>
<td>1.2M*</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ + Al$ 31 GeV/c</td>
<td>0.8M*</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ + C$ 60 GeV/c</td>
<td>0.8M*</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ + Al$ 60 GeV/c</td>
<td>0.7M*</td>
<td></td>
</tr>
<tr>
<td>$K^+ + C$ 60 GeV/c</td>
<td>0.7M*</td>
<td></td>
</tr>
<tr>
<td>$K^+ + Al$ 60 GeV/c</td>
<td>0.5M*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2016</th>
<th>reaction</th>
<th>events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p+C$ 60 GeV/c</td>
<td>3.1M</td>
<td></td>
</tr>
<tr>
<td>$p+Be$ 60 GeV/c</td>
<td>2.2M</td>
<td></td>
</tr>
<tr>
<td>$p+Al$ 60 GeV/c</td>
<td>3.5M</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ + C$ 60 GeV/c</td>
<td>3.0M</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ + Be$ 60 GeV/c</td>
<td>2.7M</td>
<td></td>
</tr>
<tr>
<td>$p+C$ 120 GeV/c</td>
<td>4.6M</td>
<td></td>
</tr>
<tr>
<td>$p+Be$ 120 GeV/c</td>
<td>2.5M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2017</th>
<th>reaction</th>
<th>events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+ + C$ 30 GeV/c</td>
<td>2.2M</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ + Al$ 60 GeV/c</td>
<td>3.3M</td>
<td></td>
</tr>
<tr>
<td>$\pi^− + C$ 60 GeV/c</td>
<td>3.6M**</td>
<td></td>
</tr>
<tr>
<td>$p+C$ 90 GeV/c</td>
<td>3.3M**</td>
<td></td>
</tr>
<tr>
<td>$p+C$ 120 GeV/c</td>
<td>2.6M**</td>
<td></td>
</tr>
<tr>
<td>$p+Be$ 120 GeV/c</td>
<td>4.0M**</td>
<td></td>
</tr>
</tbody>
</table>

* no B field
** with FTPCs and forward ToF
Results from hadron+A interactions for Fermilab ν beams

✓ 2015 cross-section results (π^+ and K^+ beams)

- greatly improves precision for kaon interactions as NuMI simulation assumes an uncertainty of 10 – 30% for kaon reinteractions

✓ 2016 preliminary cross-section results (proton beam)

- first measurement for p@120 GeV
- improved precision for 60 GeV/c protons
Measurements of p@31GeV/c on T2K replica target

✓ 2007: 0.2M events
 • pilot runs, development of calibration and analysis procedures, π^{\pm} yields (NIM A701 (2013) 99)

✓ 2009: 2.8M events
 • π^{\pm} differential multiplicities on target surface (EPJ C76 (2016) 617)

✓ 2010: 0.2Tm field, 10.1M events
 • π^{\pm}, p, K^{\pm} differential multiplicities on target surface (EPJ C79, no.2 100 (2019))

✓ 2010: maximum 9Tm field, 1.2M events
 • proton beam survival probability (ongoing analysis)
A glimpse at T2K replica target results: π^+ from Z1 bin

π^+ double differential multiplicities alongside MC predictions

- T2K flux uncertainty is expected to drop down to $\sim 5\%$ taking into account π, K, p differential multiplicities
Thick target measurements for Fermilab ν beams

$p@120\text{GeV/c on the 1.2 m long NuMI replica target (graphite fins)}$

- total of 5 weeks data taking in 2018
- aided with vertex distributions monitoring

- $\sim 18\text{M recorded events awaiting calibration and analysis}$
Prospects beyond 2020

Upgrades to the NA61/SHINE spectrometer
- data taking rate increase to about 1 kHz - TPC readout, new DAQ and trigger systems, etc.
- new ToF wall with mRPC

Planned neutrino-related measurements
- with T2K replica target
- with T2K-II/Hyper-K target material and/or replica target
- with DUNE replica target, if prototype is available
- kaons on thin targets
Summary

✓ direct hadron production measurements constrain neutrino flux predictions

✓ thin target measurements by NA61/SHINE improved T2K flux uncertainty down to $\sim 10\%$

✓ thick target results will further reduce the uncertainty to $\sim 5\%$

✓ broad data taking programme for Fermilab ν experiments

✓ after LS2, NA61 plans for more and diverse hadron production measurements, building on past experience!
NA61/SHINE collaboration: ~ 150 physicists from ~ 30 institutes

This work is supported by Bulgarian National Science Fund (grants DN08/11 and DCOST01/8) and the Bulgarian Nuclear Regulatory Agency and the Joint Institute for Nuclear Research, Dubna according to bilateral contract No. 4418-1-15/17
Thank you for your attention!