Forward Calorimeter for the ALICE Experiment

Physics Motivation

		$xf_g(x)$	
0.8 - · · · · · · · · · · · · · · · · · ·	pA collision (probing initial condition) 	xf _d (x)	
Particle production	Distribution of Gluon density at small-x (10 ⁻⁴ to 10 ⁻⁶)	Opacity and Response of the medium: gamma-jets correlations.	
Effect of small-x contribution 0.2	Study of Color Glass Condensate	Parton energy loss in dense partonic matter.	
0).2 0.4 0.6	0.8 1	
12 Eeb 2019	Saniib Muburi, VECC	2	

Physics Motivation

Experimental Observables: Photons, neutral pions, J/Y, Jets

Sources of direct photons

ALICE Experiment in Present scenario

Measurement in forward rapidity could complement and enhance ALICE physics capabilities.

Excellent coverage in mid-rapidity.

Limited in Forward Rapidity

Forward Rapidity is not instrumented which results an unobstructed view of interaction point

A comparative Kinematic Coverage for different experiments

Sanjib Muhuri, VECC

Design and Geometry

Hardware development

 Development for Low Granular Layer (LGL) High Granular Layer (HGH)
 Readout Electronics

(Efforts in India)

12 Feb 2019

(Efforts in India)

Shower Maximum shift with the increase in incident energy.

(Efforts in India)

Tungsten Si pad

Test beam setup @ PS (same for SPS) in 2015

(Efforts in Japan)

2016 SPS test beam (Sep. 7-12)

SPS beam test in 2018 (July, Aug)

- Two independent setups
 - 1. PAD
 - APV25 hybrid
 - SRS+DATE software
 - 2. MAPS
 - ALPIDE (ALICE ITS upgrade)
- Beams @ SPS
 - 100,110,120,150 GeV/c, e⁺
 - 250 GeV/c, e-
 - 180 GeV/c, hadrons

(Efforts in Japan)

(Efforts in Japan)

(Efforts in Japan)

S. Takasu

Detector development for HGL (Efforts in The Netherlands)

R&D for HGL layers based on CMOS- MAPS

Test with beams at DESY, CERN PS, SPS

4x4 cm² cross section 24 layers 30 μm pixels 39 M pixels total display of single event (with pile-up) from 244 GeV mixed beam

12 Feb 2019

Detector development for HGL

(Efforts in The Netherlands)

Development of Mini FoCal

(Efforts in Japan)

At z = 7.62 m from IP, in front of ZEM

- Three towers structure.
 - 20 layers of silicon PAD / tower (20 X₀)
 - 3 layers of MAPS / tower
 - Total No. of PD: 64 x 20 x 3 = 3,840
- Combine PAD and MAPS for three towers as one
- Close to the final design of FoCal EM
- No MAPS at this time.
- Optimized to measure 50 200 GeV photons.

Development of Mini FoCal

(Efforts in Japan)

Readout Electronics

Requirements

- > Increased data rate capability, Target: 50kHz in Pb-Pb
- ➤ Radiation Dose: 1x10¹² 1 MeV neutron equivalent dose per cm²~ 80-180 krad
- > Dynamic range (D.R) ~ 1 MIP to >10 pC (?) (~>70 dB)
- ➢ Noise: 600 − 2000 e
- ➢ Number of channels: 64 per detector
- ▶ Power Dissipation: less than 10 mW / Channel
- ➤ Digitization **Resolution** : Min 10 bit, preferred 12 bit
- ➢ DAQ compatibility: CRU of ALICE

Available Chips

1. ANUINDRA ASIC: 16 channel /2.6 pC D.R/ compatible with CROCUS/ functionally same as MANAS / 0.35 um CMOS technology, Triggered DAQ

2. SAMPA ASIC: 32 channel/500 fC D.R/compatible with CRU/0.13 um CMOS technology

- **3. SKIROC/HGROC:** 64 channel/ 10pC D.R/ADC (150 fC)+ToT (time over threshold)/0.13 um CMOS technology
- **4. VMM-3 ASIC:** 64 channel / 2 pC D.R (?) / 0.13 um CMOS technology / very low power

12 Feb 2019

BACKUP SLIDES

Design and Geometry

Design parameters

CERN-INDIA TASK FORCE Meeting, 3 - 4 Sept, 2016, BARC, Mumbai

Limitation of the readout shows the saturation effect which is appearing after 20 GeV. Maximum Saturation effect found was about 18%. 60GeV case need to be taken more seriously because of it's anomalous behavior. **Experimental Observables:** Gamma from different sources

✓ Probing the gluon density with direct photons

Feynman diagrams for photon production:

At leading order, isolated photons from

- ✓ a) quark-gluon Compton process,
- b) quark-antiquark annihilation process.

Non-isolated photons at next-to-leading order from

- ✓ c) bremsstrahlung from a quark,
- d) emission during the gluon fragmentation process.

x-Q coverage of various experiments and measurements:

- Left panel shows DIS measurements and the photon measurements
- Right panel shows the regions covered by hadron measurements
- Clearly, the FOCAL measurements will probe much smaller-x than the existing measurements.

CERN-INDIA TASK FORCE Meeting, 3 - 4 Sept, 2016, BARC, Mumbai

Hardware Development done so far:

ANUINDRA test board

Response of a single silicon pad detector to 90Sr source. A clear peak corresponding to energy of 0.546 MeV is visible on the right, well separated from the noise.

Full-Length Prototype: Testing with ANUINDRA

High Granularity (HG) Prototype, MAPS

MAPS prototype

- 4x4 cm² cross section, 28 X₀ depth
- 24 layers: W absorber + 4 MAPS each
- MIMOSA PHASE 2 chip (IPHC Strasbourg)
 - 30 µm pixels
 - 640 µs integration time (needs upgrade – too slow for experiment)
- 39 M pixels total

x (cm)

Test with beams at DESY, CERN PS, SPS

measurement (DESY) of pile-up of two 5.4 GeV electrons, demonstrates two-shower separation capabilities

Specification	ANUSANSKAR	MANAS	ANUINDRA
Noise at 0 pF	390 rms electrons	500 rms electrons	700 rms electrons
Noise slope	7 e ⁻ /pf	11.6 e ⁻ /pf	15 e ⁻ /pF
Linear dynamic range	+/- 600 fC	+ 500 fC to -300 fC	~ (2.4 - 2.6) pC
Conversion gain	3.3 mV/fC	3.2 mV/fC	(1-1.25) mV/fC
Peaking time	1.2 µs	1.2 µs	1.2 µs
Baseline recovery	1% after 4 µs	1% after 5 µs	1% after 5 µs
VDD/VSS	+/- 2.5 V	+/- 2.5 V	+5 V/GND
Analogue readout speed	1 MHz	1 MHz	1 MHz
Power consumption	~ 15 mW/channel	~ 9 mW/channel	~ 25 mW/Channel
Die area	4.6 mm x 4.6 mm	4.6 mm x 2.4 mm	~ 5.6 mm x 5.3 mm
Technology	0.7 µm standard	1.2 μm standard	0.35 µm standard
	CMOS	CMOS	CMOS
Package	CLCC-68	TQFP-48	CLCC-68