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In this talk, I’ll discuss our recent work in using strings/branes to probe the 
consistency of EFTs coupled to gravity: 

• Branes and the Swampland [Kim, GS, Vafa, 1905.08261]



In this talk, I’ll discuss our recent work in using strings/branes to probe the 
consistency of EFTs coupled to gravity: 

• Branes and the Swampland [Kim, GS, Vafa, 1905.08261]

In the interest of time, I won’t be able to cover other interesting works on:

• Weak Gravity Conjecture (WGC):

• WGC, Black Hole Entropy, & Modular Invariance [Aalsma, Cole, GS, ’19]
• WGC from Unitarity and Causality [Hamada, Noumi, GS, 18]
• Tower WGC [Andriolo, Junghans, Noumi, GS, ’18] (see Andriolo’s talk)
• Strong WGC & Modular Bootstrap [Montero, GS, ’19] (see Montero’s talk) 

• de Sitter in String theory
• Distance and de Sitter Conjectures [Ooguri, Palti, GS, Vafa, ’18]
• Understanding KKLT from a 10d perspective [Hamada, Hebecker, GS, 

Soler, ’18, ’19] (see Hebecker & Soler’s talks)

• Data Science and String Theory:
• Topological Data Analysis [Cole, GS, ’18]  and Genetic Algorithm [Cole, 

Schachner, GS, ’19] (see Schachner’s talk) for the string landscape.
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Landscape
Swampland

Landscape vs Swampland

[Vafa, ’05]

What properties delineate the landscape from the swampland?
What are the phenomenological implications? Is there a swampland?

10272,000  F-theory vacua 
[Taylor, Wang, ’15]



Swampland Criteria

dS Conjecture

Weak Gravity Conjecture

[Obied, Ooguri, Spodyneiko, Vafa,’18];
[Ooguri, Palti, GS, Vafa, ’18]

[Arkani-Hamed, Motl, Nicolis, Vafa. ’06]
Distance Conjecture

 [Ooguri, Vafa. ’06]

There are varying degrees of understanding for different 
swampland criteria and their interconnections:

These criteria do not follow from purely low-energy EFT considerations.
Why are they necessary for consistency of quantum gravitational theories? 



Branes and the Swampland
[Kim, GS, Vafa, ’19]

“Putting strings back into string pheno”



Branes and the Swampland

• Completeness of spectrum of charged branes [Polchinski ’03], [Banks, 
Seiberg, ’10]: use them to probe consistency of EFTs coupled to gravity.

• First consider N=(1,0) SUGRA theories in 10d & 6d as gauge and 
gravitational anomaly cancellations severely limit the possibilities.

• We illustrate the power of this approach with just a few examples and 
with only string probes but we expect this program of using brane 
probes to understand swampland criteria has wider applicabilities.  

• We showed the 10d anomaly-free theories with E8 x U(1)248 and U(1)496 
gauge groups that have no string realizations are in the swampland.

• Infinite families of anomaly-free 6d theories [Kumar, Morrison, Taylor, ’10] 
with unbounded gauge group rank, or unbounded number of tensors or 
matter in exotic representations. We showed that unitarity of current 
algebra on string probes can rule out some of these infinite families. 



Strings in 10d N=(1,0) SUGRA



Anomaly Cancellation in 10d
• The gauge and gravitational anomalies of 10d N=(1,0) SUGRA 

theories can be cancelled by the Green-Schwarz mechanism [Green, 
Schwarz, ’84] , allowing only 4 choices for gauge groups:

• The latter two were conjectured to be in the swampland [Vafa ‘05].  
• It was argued that anomaly cancellation cannot be made compatible 

with SUSY & Abelian gauge invariance [Adams, DeWolfe, Taylor, ’10]

• In [Kim, GS, Vafa, ’19], we presented an independent argument ruling 
out the latter 2 theories by showing that the central charges on BPS 
strings in these theories are too small to realize the current algebra.

SO(32), E8 × E8, E8 × U(1)248, U(1)496

low energy limits of Type I and heterotic string theories



Strings in 10d
• Strings are sources for the 2-form tensor field B2, which by the 

completeness assumption should exist; they are also stable (∵BPS).

• A string with tensor charge Q adds to the 10d action:

• The 2-form B transforms under local gauge & Lorentz symmetries: 

• The string action is not invariant:

2

The anomalies of 10d (1, 0) supergravity theories can be
cancelled by the Green-Schwarz mechanism [12]. The
anomaly cancellation allows only 4 choices for gauge groups:
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See Appendix A for details.
The 10d supergravity theories with the former two gauge

groups SO(32) and E
8

⇥E
8

are realized as low energy limits
of the type I and the heterotic string theories. On the other
hand, it was argued in [7] that two other theories with abelian
gauge factors are not consistent at the quantum level due to
anomalies in the context of abelian gauge invariance.

We will now propose a novel stringent condition ruling out
the latter two theories with abelian gauge factors by using 2d
strings coupled to these 10d theories. When 2d strings couple
to the 10d supergravity, the worldsheet degrees of freedom in
general develop local gravitational and gauge anomalies. The
worldsheet anomalies can be cancelled by the anomaly inflow
from the 10d bulk theory toward the 2d strings. In the fol-
lowing, we will derive the anomaly inflow for 2d strings in
the 10d supergravity by employing the method developed in
[13–15]. We will then check if the anomaly inflow can be can-
celled by local anomalies in a unitary worldsheet theory, using
the IR properties of the strings and the resulting effective CFT
on them. When this cancellation cannot occur, the 10d su-
pergravity becomes an inconsistent theory hosting non-trivial
anomalies on the 2d strings.

Strings are sources for the 2-form tensor field B
2

, which by
assumption of completeness of the spectrum in a gravitational
theory should exist. Moreover it is easy to show that they are
stable due to the BPS condition. A string with tensor charge
Q adds to the 10d action the tensor coupling
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denotes the gauge field strengths and R denotes the
curvature 2-form of the 10d spacetime.

The string action Sstr is not invariant under these local
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As a consequence the introduction of 2d strings induces an
anomaly inflow along the worldsheet of the strings. The
anomaly inflow is characterized by the 4-form anomaly poly-
nomial which in this case is given by
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These anomalies must be cancelled by the anomalies coming
from the worldsheet degrees of freedom living on the strings.

A half-BPS string coupled to the 10d supergravity gives rise
to an N = (0, 8) superconformal field theory (SCFT) at low
energy. To find the chirality of the supersymmetry one uses
the condition that we start with a chiral theory in 10d, and for
a BPS string we preserve half the supersymmetries, leading
to a definite chirality for the supercurrents on the worldsheet.
Supersymmetry on the BPS string also shows that the current
for the group has opposite chirality to that of supersymmetry.
We choose conventions so that the supersymmetry current is
right-moving and the current for the group is left-moving.

To cancel the anomaly inflow from the bulk gravity theory,
the gravitational and the gauge anomalies of the SCFT on a
string must be

I
4

= �I inflow
4

= Q

"
1

2

p
1

(T
2

)� c
2

(SO(8)) +

1

4

X

i

TrF 2

i

#
. (6)

Here we used the decomposition
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(T
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) is the first Pontryagin class of the two-manifold
M

2

and c
2

(SO(8)) is the second Chern class of the SO(8)

R-symmetry bundle of the worldsheet theory.
Note that the above result involves the contribution from the

center of mass degrees of freedom. The center of mass modes
form a free (0, 8) multiplet (X

µ

,�I

+

) with µ, I = 1, · · · , 8
where X

µ

parametrize the motion of strings along 8 trans-
verse directions and �I

+

is the right-moving fermion in the
SO(8) spinor representation. From this, we read the anomaly
polynomial for the center of mass modes
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So, the anomaly polynomial of the interacting sector in the 2d
worldsheet SCFT is given by I 0
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Let us now focus on the 2d SCFT on a single string, i.e.

Q = 1. The anomaly polynomial of this CFT is
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The left-moving and the right-moving central charges c
L

, c
R

and the level k
i

’s of gauge algebras in the worldsheet SCFT
can be computed from the anomaly polynomial I 0
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efficient of the superconformal R-symmetry current at the IR
fixed point. One finds that ’t Hooft anomalies for the SO(8)

R-symmetry in I 0
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BPS strings Iinflow from 10d bulk



Anomaly Inflow
• Anomaly inflow along the worldsheet:

• A half-BPS string in 10d gives rise to N=(0,8) SCFT at low energy: 
supercurrent on the worldsheet has a definite chirality (right-moving) 
and is opposite to that of the current for the group (left-moving).

• To cancel the anomaly inflow, the anomalies of the worldsheet SCFT:

where we used the decomposition:

• The above result includes contributions from center of mass dofs.
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the condition that we start with a chiral theory in 10d, and for
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Supersymmetry on the BPS string also shows that the current
for the group has opposite chirality to that of supersymmetry.
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We will now propose a novel stringent condition ruling out
the latter two theories with abelian gauge factors by using 2d
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celled by local anomalies in a unitary worldsheet theory, using
the IR properties of the strings and the resulting effective CFT
on them. When this cancellation cannot occur, the 10d su-
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to a definite chirality for the supercurrents on the worldsheet.
Supersymmetry on the BPS string also shows that the current
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general develop local gravitational and gauge anomalies. The
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the IR properties of the strings and the resulting effective CFT
on them. When this cancellation cannot occur, the 10d su-
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the condition that we start with a chiral theory in 10d, and for
a BPS string we preserve half the supersymmetries, leading
to a definite chirality for the supercurrents on the worldsheet.
Supersymmetry on the BPS string also shows that the current
for the group has opposite chirality to that of supersymmetry.
We choose conventions so that the supersymmetry current is
right-moving and the current for the group is left-moving.
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the gravitational and the gauge anomalies of the SCFT on a
string must be

I
4

= �I inflow
4

= Q

"
1

2

p
1

(T
2

)� c
2

(SO(8)) +

1

4

X

i

TrF 2

i

#
. (6)

Here we used the decomposition

trR2

= �1

2

p
1

(T
2

) + c
2

(SO(8)) , (7)

where p
1

(T
2

) is the first Pontryagin class of the two-manifold
M

2

and c
2

(SO(8)) is the second Chern class of the SO(8)

R-symmetry bundle of the worldsheet theory.
Note that the above result involves the contribution from the

center of mass degrees of freedom. The center of mass modes
form a free (0, 8) multiplet (X

µ

,�I

+

) with µ, I = 1, · · · , 8
where X

µ

parametrize the motion of strings along 8 trans-
verse directions and �I

+

is the right-moving fermion in the
SO(8) spinor representation. From this, we read the anomaly
polynomial for the center of mass modes

Icom
4

= �1

6

p
1

(T
2

)� c
2

(SO(8)) . (8)

So, the anomaly polynomial of the interacting sector in the 2d
worldsheet SCFT is given by I 0

4

= I
4

� Icom
4

.
Let us now focus on the 2d SCFT on a single string, i.e.

Q = 1. The anomaly polynomial of this CFT is

I 0
4

= I
4

� Icom
4

=

2

3

p
1

(T
2

) +

1

4

X

i

TrF 2

i

. (9)

The left-moving and the right-moving central charges c
L

, c
R

and the level k
i

’s of gauge algebras in the worldsheet SCFT
can be computed from the anomaly polynomial I 0

4

. The rel-
ative central charge c

R

� c
L

is the coefficient of the grav-
itational anomaly � 1

24

p
1

(T
2

) and the right-moving central
charge is c

R

= 3k
R

where k
R

is the ’t Hooft anomaly co-
efficient of the superconformal R-symmetry current at the IR
fixed point. One finds that ’t Hooft anomalies for the SO(8)

R-symmetry in I 0
4

vanish. The level k
i

is the coefficient of the
gauge anomaly term 1

4

TrF 2

i

. We then compute

c
L

= 16 , c
R

= 0 , k
i

= 1 . (10)



Anomaly Inflow
• The com modes form a free (0,8) multiplet (Xμ , λI+) with μ, I = 1, …8

• The anomaly contribution from the center of mass modes:

• The anomaly of the interacting sector in the worldsheet SCFT (Q=1):

• The central charges & level of gauge algebras can be read off from:

Xμ : motion in 8 transverse directions

λI
+ : right − moving SO(8) spinor

2

The anomalies of 10d (1, 0) supergravity theories can be
cancelled by the Green-Schwarz mechanism [12]. The
anomaly cancellation allows only 4 choices for gauge groups:

SO(32) , E
8

⇥ E
8

, E
8

⇥ U(1)

248 , U(1)

496 . (1)

See Appendix A for details.
The 10d supergravity theories with the former two gauge

groups SO(32) and E
8

⇥E
8

are realized as low energy limits
of the type I and the heterotic string theories. On the other
hand, it was argued in [7] that two other theories with abelian
gauge factors are not consistent at the quantum level due to
anomalies in the context of abelian gauge invariance.

We will now propose a novel stringent condition ruling out
the latter two theories with abelian gauge factors by using 2d
strings coupled to these 10d theories. When 2d strings couple
to the 10d supergravity, the worldsheet degrees of freedom in
general develop local gravitational and gauge anomalies. The
worldsheet anomalies can be cancelled by the anomaly inflow
from the 10d bulk theory toward the 2d strings. In the fol-
lowing, we will derive the anomaly inflow for 2d strings in
the 10d supergravity by employing the method developed in
[13–15]. We will then check if the anomaly inflow can be can-
celled by local anomalies in a unitary worldsheet theory, using
the IR properties of the strings and the resulting effective CFT
on them. When this cancellation cannot occur, the 10d su-
pergravity becomes an inconsistent theory hosting non-trivial
anomalies on the 2d strings.

Strings are sources for the 2-form tensor field B
2

, which by
assumption of completeness of the spectrum in a gravitational
theory should exist. Moreover it is easy to show that they are
stable due to the BPS condition. A string with tensor charge
Q adds to the 10d action the tensor coupling

Sstr

= Q

Z

M10

B
2

^
8Y

a=1

�(xa

)dxa

= Q

Z

M2

B . (2)

The 2-form B transforms under the local gauge and the local
Lorentz symmetry [16, 17] (with parameters ⇤

i

and ⇥ respec-
tively) as

B
2

! B
2

� 1

4

X

i

Tr(⇤

i

F
i

) + tr(⇥R) , (3)

where F
i

denotes the gauge field strengths and R denotes the
curvature 2-form of the 10d spacetime.

The string action Sstr is not invariant under these local
transformations

�
⇤,⇥

Sstr

= Q

Z

M2

"
�1

4

X

i

Tr(⇤

i

F
i

) + tr(⇥R)

#
. (4)

As a consequence the introduction of 2d strings induces an
anomaly inflow along the worldsheet of the strings. The
anomaly inflow is characterized by the 4-form anomaly poly-
nomial which in this case is given by

I inflow
4

= Q

 
�1

4

X

i

TrF 2

i

+ trR2

!
. (5)

These anomalies must be cancelled by the anomalies coming
from the worldsheet degrees of freedom living on the strings.

A half-BPS string coupled to the 10d supergravity gives rise
to an N = (0, 8) superconformal field theory (SCFT) at low
energy. To find the chirality of the supersymmetry one uses
the condition that we start with a chiral theory in 10d, and for
a BPS string we preserve half the supersymmetries, leading
to a definite chirality for the supercurrents on the worldsheet.
Supersymmetry on the BPS string also shows that the current
for the group has opposite chirality to that of supersymmetry.
We choose conventions so that the supersymmetry current is
right-moving and the current for the group is left-moving.

To cancel the anomaly inflow from the bulk gravity theory,
the gravitational and the gauge anomalies of the SCFT on a
string must be

I
4

= �I inflow
4

= Q

"
1

2

p
1

(T
2

)� c
2

(SO(8)) +

1

4

X

i

TrF 2

i

#
. (6)

Here we used the decomposition

trR2

= �1

2

p
1

(T
2

) + c
2

(SO(8)) , (7)

where p
1

(T
2

) is the first Pontryagin class of the two-manifold
M

2

and c
2

(SO(8)) is the second Chern class of the SO(8)

R-symmetry bundle of the worldsheet theory.
Note that the above result involves the contribution from the

center of mass degrees of freedom. The center of mass modes
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The left-moving and the right-moving central charges c
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and the level k
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’s of gauge algebras in the worldsheet SCFT
can be computed from the anomaly polynomial I 0

4

. The rel-
ative central charge c

R

� c
L

is the coefficient of the grav-
itational anomaly � 1

24

p
1

(T
2

) and the right-moving central
charge is c

R

= 3k
R

where k
R

is the ’t Hooft anomaly co-
efficient of the superconformal R-symmetry current at the IR
fixed point. One finds that ’t Hooft anomalies for the SO(8)

R-symmetry in I 0
4

vanish. The level k
i

is the coefficient of the
gauge anomaly term 1

4

TrF 2

i

. We then compute

c
L

= 16 , c
R

= 0 , k
i

= 1 . (10)

2

The anomalies of 10d (1, 0) supergravity theories can be
cancelled by the Green-Schwarz mechanism [12]. The
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The 10d supergravity theories with the former two gauge
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are realized as low energy limits
of the type I and the heterotic string theories. On the other
hand, it was argued in [7] that two other theories with abelian
gauge factors are not consistent at the quantum level due to
anomalies in the context of abelian gauge invariance.

We will now propose a novel stringent condition ruling out
the latter two theories with abelian gauge factors by using 2d
strings coupled to these 10d theories. When 2d strings couple
to the 10d supergravity, the worldsheet degrees of freedom in
general develop local gravitational and gauge anomalies. The
worldsheet anomalies can be cancelled by the anomaly inflow
from the 10d bulk theory toward the 2d strings. In the fol-
lowing, we will derive the anomaly inflow for 2d strings in
the 10d supergravity by employing the method developed in
[13–15]. We will then check if the anomaly inflow can be can-
celled by local anomalies in a unitary worldsheet theory, using
the IR properties of the strings and the resulting effective CFT
on them. When this cancellation cannot occur, the 10d su-
pergravity becomes an inconsistent theory hosting non-trivial
anomalies on the 2d strings.

Strings are sources for the 2-form tensor field B
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, which by
assumption of completeness of the spectrum in a gravitational
theory should exist. Moreover it is easy to show that they are
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As a consequence the introduction of 2d strings induces an
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These anomalies must be cancelled by the anomalies coming
from the worldsheet degrees of freedom living on the strings.

A half-BPS string coupled to the 10d supergravity gives rise
to an N = (0, 8) superconformal field theory (SCFT) at low
energy. To find the chirality of the supersymmetry one uses
the condition that we start with a chiral theory in 10d, and for
a BPS string we preserve half the supersymmetries, leading
to a definite chirality for the supercurrents on the worldsheet.
Supersymmetry on the BPS string also shows that the current
for the group has opposite chirality to that of supersymmetry.
We choose conventions so that the supersymmetry current is
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Anomaly Cancellation on String Probes

• This gives: 
• The central charges are constrained by unitarity conditions on the 

2d CFTs which describe the IR dofs on the string. 
• The central charge realizing level-k Kac-Moody algebra:

• For unitary CFT on a string:

• The unitary bound is violated for E8 x U(1)248 and U(1)496  (they are in 
the swampland) while it is saturated for SO(32) and E8 x E8.

3

The central charges are constrained by unitarity conditions
on 2d CFTs, which can be viewed as IR degrees of freedom
on the strings. The central charge realizing the level-k Kac-
Moody algebra of group G is (see, e.g., [18]):

c
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where dimG is the dimension and h_ is the dual Coxeter num-
ber of group G respectively. The central charge for U(1) cur-
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. For (0, 8) SCFTs, the
current algebra for group G is on the left-moving sector. This
tells us that
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for a unitary CFT on a string.
We find that the 10d supergravity theories with abelian

gauge groups contains non-unitary strings violating this in-
equality. The U(1)

496 and U(1)

248 abelian factors in these
theories give rise to too many left-moving modes for the cur-
rent algebras in the worldsheet CFT, and the central charge
of the current algebra exceeds c
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= 16, namely
P

i

c
i

>
c
L

. Therefore we conclude that 10d supergravity theories
with U(1)

496 and E
8

⇥ U(1)

248 gauge groups are inconsis-
tent when coupled to 2d strings, and thus they belong to the
swampland. On the other hand, the central charges on a sin-
gle string in the 10d supergravities with SO(32) or E

8

⇥ E
8

gauge group saturate the bound (12) as
P

i

c
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= c
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= 16, so
the string can consistently couple to these 10d theories.

III. STRINGS IN 6D N = (1, 0) SUPERGRAVITY

We now turn to six-dimensional supergravity theories pre-
serving 8 supersymmetries. There are four kinds of massless
supermultiplets appearing in such theories: a gravity multi-
plet, tensor multiplets, vector multiplets, and hypermultiplets.
6d supergravity theories may have anomalies, which are char-
acterized by an 8-form anomaly polynomial I

8

, from the chi-
ral fields in these multiplets.

Let us consider a gravity theory coupled to T tensor mul-
tiplets and vector multiplets of the gauge group G =

Q
i

G
i

,
as well as hypermultiplets transforming in representation R
of the gauge group. The chiral fields such as the self-dual
and anti-self dual two-forms B±

µ⌫

, a gravitino, and other chi-
ral fermions in this theory contribute to the anomalies for
the gauge and Lorentz transformations. Such anomalies can
exactly be computed by evaluating 1-loop box diagrams for
the chiral fields with four external gravitational and gauge
sources. Consistent quantum supergravity theories must be
free of such anomalies. Thus non-vanishing 1-loop anomalies
must be cancelled for the 6d theories that are consistent at the
quantum level, which leads to quite stringent constraints.

The 1-loop anomalies can be cancelled by the Green-
Schwarz-Sagnotti mechanism [19] if the anomaly polynomial
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is used for the inner product of two vectors, like
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v↵w� . Here V and H are the number of vec-
tor and hyper multiplets, and ni
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When these conditions are satisfied, the perturbative anomaly
factorizes and it can be cancelled by adding to the action the
Green-Schwarz term
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This term induces tree-level anomalies of the form IGS
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that exactly cancels the factorized anomaly
I1�loop

8

. So, 6d supergravity theories satisfying the condi-
tions in equation (14) have no apparent quantum anomalies
and seem to be consistent. Extensive lists of would-be con-
sistent 6d supergravity theories are given in various literature
[8, 20–27] (see [4] for a review).

A. Central charges of 2d (0, 4) SCFTs on strings

Let us now consider 2d strings in 6d supergravity theory
without manifest anomalies. We will discuss additional con-
ditions from the 6d/2d coupled system. Strings are sources
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The anomalies of 10d (1, 0) supergravity theories can be
cancelled by the Green-Schwarz mechanism [12]. The
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See Appendix A for details.
The 10d supergravity theories with the former two gauge

groups SO(32) and E
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are realized as low energy limits
of the type I and the heterotic string theories. On the other
hand, it was argued in [7] that two other theories with abelian
gauge factors are not consistent at the quantum level due to
anomalies in the context of abelian gauge invariance.

We will now propose a novel stringent condition ruling out
the latter two theories with abelian gauge factors by using 2d
strings coupled to these 10d theories. When 2d strings couple
to the 10d supergravity, the worldsheet degrees of freedom in
general develop local gravitational and gauge anomalies. The
worldsheet anomalies can be cancelled by the anomaly inflow
from the 10d bulk theory toward the 2d strings. In the fol-
lowing, we will derive the anomaly inflow for 2d strings in
the 10d supergravity by employing the method developed in
[13–15]. We will then check if the anomaly inflow can be can-
celled by local anomalies in a unitary worldsheet theory, using
the IR properties of the strings and the resulting effective CFT
on them. When this cancellation cannot occur, the 10d su-
pergravity becomes an inconsistent theory hosting non-trivial
anomalies on the 2d strings.

Strings are sources for the 2-form tensor field B
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, which by
assumption of completeness of the spectrum in a gravitational
theory should exist. Moreover it is easy to show that they are
stable due to the BPS condition. A string with tensor charge
Q adds to the 10d action the tensor coupling
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denotes the gauge field strengths and R denotes the
curvature 2-form of the 10d spacetime.

The string action Sstr is not invariant under these local
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As a consequence the introduction of 2d strings induces an
anomaly inflow along the worldsheet of the strings. The
anomaly inflow is characterized by the 4-form anomaly poly-
nomial which in this case is given by
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These anomalies must be cancelled by the anomalies coming
from the worldsheet degrees of freedom living on the strings.

A half-BPS string coupled to the 10d supergravity gives rise
to an N = (0, 8) superconformal field theory (SCFT) at low
energy. To find the chirality of the supersymmetry one uses
the condition that we start with a chiral theory in 10d, and for
a BPS string we preserve half the supersymmetries, leading
to a definite chirality for the supercurrents on the worldsheet.
Supersymmetry on the BPS string also shows that the current
for the group has opposite chirality to that of supersymmetry.
We choose conventions so that the supersymmetry current is
right-moving and the current for the group is left-moving.

To cancel the anomaly inflow from the bulk gravity theory,
the gravitational and the gauge anomalies of the SCFT on a
string must be
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The central charges are constrained by unitarity conditions
on 2d CFTs, which can be viewed as IR degrees of freedom
on the strings. The central charge realizing the level-k Kac-
Moody algebra of group G is (see, e.g., [18]):
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for a unitary CFT on a string.
We find that the 10d supergravity theories with abelian

gauge groups contains non-unitary strings violating this in-
equality. The U(1)
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248 abelian factors in these
theories give rise to too many left-moving modes for the cur-
rent algebras in the worldsheet CFT, and the central charge
of the current algebra exceeds c
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= 16, namely
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. Therefore we conclude that 10d supergravity theories
with U(1)
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tent when coupled to 2d strings, and thus they belong to the
swampland. On the other hand, the central charges on a sin-
gle string in the 10d supergravities with SO(32) or E
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gauge group saturate the bound (12) as
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= 16, so
the string can consistently couple to these 10d theories.

III. STRINGS IN 6D N = (1, 0) SUPERGRAVITY

We now turn to six-dimensional supergravity theories pre-
serving 8 supersymmetries. There are four kinds of massless
supermultiplets appearing in such theories: a gravity multi-
plet, tensor multiplets, vector multiplets, and hypermultiplets.
6d supergravity theories may have anomalies, which are char-
acterized by an 8-form anomaly polynomial I

8

, from the chi-
ral fields in these multiplets.

Let us consider a gravity theory coupled to T tensor mul-
tiplets and vector multiplets of the gauge group G =

Q
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G
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,
as well as hypermultiplets transforming in representation R
of the gauge group. The chiral fields such as the self-dual
and anti-self dual two-forms B±

µ⌫

, a gravitino, and other chi-
ral fermions in this theory contribute to the anomalies for
the gauge and Lorentz transformations. Such anomalies can
exactly be computed by evaluating 1-loop box diagrams for
the chiral fields with four external gravitational and gauge
sources. Consistent quantum supergravity theories must be
free of such anomalies. Thus non-vanishing 1-loop anomalies
must be cancelled for the 6d theories that are consistent at the
quantum level, which leads to quite stringent constraints.

The 1-loop anomalies can be cancelled by the Green-
Schwarz-Sagnotti mechanism [19] if the anomaly polynomial
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factorizes and it can be cancelled by adding to the action the
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. So, 6d supergravity theories satisfying the condi-
tions in equation (14) have no apparent quantum anomalies
and seem to be consistent. Extensive lists of would-be con-
sistent 6d supergravity theories are given in various literature
[8, 20–27] (see [4] for a review).

A. Central charges of 2d (0, 4) SCFTs on strings

Let us now consider 2d strings in 6d supergravity theory
without manifest anomalies. We will discuss additional con-
ditions from the 6d/2d coupled system. Strings are sources
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Strings in 6d
• N=(1,0) SUGRA in 6d has 4 kinds of massless supermultiplets:

• The chiral fields (two-forms, gravitino, and other chiral fermions) 
contribute to the gauge and gravitational anomalies:

Multiplet Matter Content
SUGRA (gµν , B+

µν ,ψ
−
µ )

Tensor (T) (B−
µν ,φ,χ

+)
Vector (V) (Aµ,λ−)
Hyper (H) (4ϕ,ψ+)

Table 2: 6D (1, 0) supersymmetry multiplets

4.1 Six-dimensional gravity with N = (1, 0) supersymmetry

We focus on the massless spectrum of six-dimensional supergravity theories. There are four
massless supersymmetry multiplets that appear in N = (1, 0) theories with 8 supercharges.
These multiplets are summarized in Table 2. The supergravity multiplet contains, in addition
to the metric, a bosonic self-dual two-form field B+

µν . There are also tensor multiplets that
contain anti-self-dual two-form fields B−

µν as well as a single scalar field. In general an N = 1
supergravity theory can have any number T of tensor multiplets, although the theory only
has a Lagrangian description when T = 1. The two-form fields B± transform under an
SO(1, T ) action that also transforms the scalar fields in the tensor multiplets. These scalar
fields parameterize a T -dimensional moduli space SO(1, T )/SO(T ) that is closely analogous
to the moduli space for toroidal compactifications (65). (A further discrete quotient by a
duality symmetry group must be taken in the quantum theory, as discussed further below.)
As in higher dimensions, the vector multiplet contains the 6D gauge field and a chiral gaugino
field. The gauge group of the theory in general takes the form

G = G1 ×G2 × · · ·×Gk × U(1)n/Γ (113)

where Gi are simple nonabelian gauge group factors, and Γ is a discrete group. The matter
hypermultiplets in 6D supergravity theories live in a manifold with a quaternionic Kähler
structure. These hypermultiplets can transform in an arbitrary representation (generally
reducible) of the gauge group.

To summarize, the discrete data characterizing the field content and symmetries of a 6D
N = 1 supergravity theory consist of the following:

T : the (integer) number of tensor multiplets

G: the gauge group of the theory; we denote by V the number of vector multiplets in the
theory.

M: the representation of G characterizing the matter content of the theory. We denote by
H the number of hypermultiplets (including uncharged multiplets) in the theory.

A complete description of the theory would involve further information such as the metric
on the scalar moduli space and higher-derivative terms in the action. We do not address this
more detailed structure in these lectures. Understanding the extent to which this structure is
uniquely determined by supersymmetry and quantum consistency is an interesting direction
for future research. The Lagrangian for 6D supergravity theories with one tensor multiplet
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(T = 1) was originally described by Nishino and Sezgin [70, 71], and the field equations for
models with multiple tensors were developed by Romans [72].

The question we now want to address is: What combinations of T,G, and M are allowed
in a consistent 6D supergravity theory? i.e., what is the space G6D,N=1? To begin to answer
this question we consider the known quantum constraints on this class of theories.

4.2 Anomalies and constraints on supergravity in 6D

The structure of quantum anomalies in six dimensions is very similar to that in ten dimen-
sions. The chiral fields of the theory that contribute to anomalies are the self-dual and
anti-self-dual two-form fields B±

µν , the gravitino ψ
−
µ , gauginos λ

−, and the chiral fermions χ+

and ψ+ from the tensor and hyper multiplets. The anomaly is characterized by an 8-form
anomaly polynomial I8(R,F ). The anomaly arises from one-loop “box” diagrams with 4
external gauge bosons or gravitons. The Green-Schwarz mechanism again comes into play
to cancel anomalies through tree diagrams mediated by an exchange of B fields [73, 74]
(See Figure 7). The story in six dimensions is complicated, however, by the presence of
multiple B fields. The generalization of the Green-Schwarz mechanism including multiple
B fields was worked out by Sagnotti. The 6D gravitational, nonabelian gauge, and mixed
gauge-gravitational anomalies cancel when the 8-form I8 factorizes in the form [75, 76, 77]

I8 =
1

2
ΩαβX

α
4 X

β
4 (114)

where

Xα
4 =

1

2
aαtrR2 +

∑

i

bαi
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λi
trF 2

i
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Here, Ωαβ is a signature (1, T ) inner product, aα and bαi are vectors in R1,T , and λi are
normalization constants for the simple group factors Gi appearing in G, where for example
λSU(N) = 1,λE8

= 60, . . .. We have not written the anomaly conditions for U(1) gauge
factors. These take a similar but slightly more complicated form [78, 79, 80]. We do not
treat U(1) factors systematically in these lectures; they add some technical complications to
the story but do not play an important rule in the main points we wish to emphasize here.

It may be helpful to consider a special case of the anomaly conditions where the fac-
torization takes a particularly simple form. When T = 1, there is always a basis for R1,T
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Green-Schwarz-Sagnotti Mechanism
• The anomaly polynomial factorizes:

• Factorization of the anomaly polynomial requires: 

• Anomaly cancelled by the Green-Schwarz term:
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The central charges are constrained by unitarity conditions
on 2d CFTs, which can be viewed as IR degrees of freedom
on the strings. The central charge realizing the level-k Kac-
Moody algebra of group G is (see, e.g., [18]):
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the string can consistently couple to these 10d theories.

III. STRINGS IN 6D N = (1, 0) SUPERGRAVITY

We now turn to six-dimensional supergravity theories pre-
serving 8 supersymmetries. There are four kinds of massless
supermultiplets appearing in such theories: a gravity multi-
plet, tensor multiplets, vector multiplets, and hypermultiplets.
6d supergravity theories may have anomalies, which are char-
acterized by an 8-form anomaly polynomial I

8

, from the chi-
ral fields in these multiplets.

Let us consider a gravity theory coupled to T tensor mul-
tiplets and vector multiplets of the gauge group G =

Q
i

G
i

,
as well as hypermultiplets transforming in representation R
of the gauge group. The chiral fields such as the self-dual
and anti-self dual two-forms B±

µ⌫

, a gravitino, and other chi-
ral fermions in this theory contribute to the anomalies for
the gauge and Lorentz transformations. Such anomalies can
exactly be computed by evaluating 1-loop box diagrams for
the chiral fields with four external gravitational and gauge
sources. Consistent quantum supergravity theories must be
free of such anomalies. Thus non-vanishing 1-loop anomalies
must be cancelled for the 6d theories that are consistent at the
quantum level, which leads to quite stringent constraints.

The 1-loop anomalies can be cancelled by the Green-
Schwarz-Sagnotti mechanism [19] if the anomaly polynomial
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. So, 6d supergravity theories satisfying the condi-
tions in equation (14) have no apparent quantum anomalies
and seem to be consistent. Extensive lists of would-be con-
sistent 6d supergravity theories are given in various literature
[8, 20–27] (see [4] for a review).

A. Central charges of 2d (0, 4) SCFTs on strings

Let us now consider 2d strings in 6d supergravity theory
without manifest anomalies. We will discuss additional con-
ditions from the 6d/2d coupled system. Strings are sources
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and anti-self dual two-forms B±

µ⌫

, a gravitino, and other chi-
ral fermions in this theory contribute to the anomalies for
the gauge and Lorentz transformations. Such anomalies can
exactly be computed by evaluating 1-loop box diagrams for
the chiral fields with four external gravitational and gauge
sources. Consistent quantum supergravity theories must be
free of such anomalies. Thus non-vanishing 1-loop anomalies
must be cancelled for the 6d theories that are consistent at the
quantum level, which leads to quite stringent constraints.

The 1-loop anomalies can be cancelled by the Green-
Schwarz-Sagnotti mechanism [19] if the anomaly polynomial
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. So, 6d supergravity theories satisfying the condi-
tions in equation (14) have no apparent quantum anomalies
and seem to be consistent. Extensive lists of would-be con-
sistent 6d supergravity theories are given in various literature
[8, 20–27] (see [4] for a review).

A. Central charges of 2d (0, 4) SCFTs on strings

Let us now consider 2d strings in 6d supergravity theory
without manifest anomalies. We will discuss additional con-
ditions from the 6d/2d coupled system. Strings are sources
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on 2d CFTs, which can be viewed as IR degrees of freedom
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for a unitary CFT on a string.
We find that the 10d supergravity theories with abelian

gauge groups contains non-unitary strings violating this in-
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theories give rise to too many left-moving modes for the cur-
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We now turn to six-dimensional supergravity theories pre-
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the gauge and Lorentz transformations. Such anomalies can
exactly be computed by evaluating 1-loop box diagrams for
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sources. Consistent quantum supergravity theories must be
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must be cancelled for the 6d theories that are consistent at the
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sistent 6d supergravity theories are given in various literature
[8, 20–27] (see [4] for a review).

A. Central charges of 2d (0, 4) SCFTs on strings

Let us now consider 2d strings in 6d supergravity theory
without manifest anomalies. We will discuss additional con-
ditions from the 6d/2d coupled system. Strings are sources
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String Probes of 6d SUGRA
• There are infinitely many anomaly-free N=(1,0) SUGRA in 6d. Are 

they all UV-completable in quantum gravity?
• Strings are sources for the (1+T) B2 which should exist by the 

completeness assumption. BPS strings preserve 1/2 SUSY.
• The worldsheet theory is a (0,4) SCFT at low energy, with anomaly:

• This anomaly includes the com contributions: 4 bosons common to 
left- and right-movers, and 4 right-moving fermions:

4

for the two-form fields B↵

2

and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.

The 2d SCFT on strings with charge Q↵ in the 6d super-
gravity theory has the anomaly polynomial of this form
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This result involves the contribution from the center of mass

degrees of freedom which decouples in the IR SCFT. The
center of mass modes consist of 4 bosons common to left-
and right-movers and 4 right-moving fermions and they form
a free hypermultiplet (X
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Therefore the anomaly polynomial of the 2d worldsheet the-
ory after removing the center of mass contributions becomes
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c

R

� c
L

is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)

I

symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)

I

is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)

I

symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)

I

symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)

R

R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c
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of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)
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symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])
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where K is the canonical class of B, and it has a SU(2)
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rent algebra at level k0
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= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem
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These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom
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= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
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One can easily see that the central charges c0
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, k0
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in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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a single interacting SCFT at low energy without the acciden-
tal SU(2)

I

symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)

R

R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c

R

of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)

R

symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
the central charges c

L

, c
R

are given by
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R

= 3Q ·Q� 3Q · a . (20)

The central charges k
i

and k
l

for the bulk gauge symmetries
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and SU(2)
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can also be extracted from the anomaly poly-
nomial. We find
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])
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where K is the canonical class of B, and it has a SU(2)
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cur-
rent algebra at level k0

l

= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem

C · C +K · C = 2g � 2 . (23)

These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom

L

= 4, ccom
R

= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
l

= �1.
One can easily see that the central charges c0

L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c
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is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)
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symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)
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is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)
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symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)

I

symmetry. The IR SCFTs on such supergravity
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R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c

R

of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)

R

symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
the central charges c

L

, c
R

are given by

c
L

= 3Q ·Q� 9Q · a+ 2 , c
R

= 3Q ·Q� 3Q · a . (20)

The central charges k
i

and k
l

for the bulk gauge symmetries
G

i

and SU(2)

l

can also be extracted from the anomaly poly-
nomial. We find

k
i

= Q · b
i

, k
l

=

1

2

(Q ·Q+Q · a+ 2) . (21)

A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
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These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom
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= 6 and, as discussed in [31], they
contribute to the SU(2)
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current algebra by kcom
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= �1.
One can easily see that the central charges c0
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, c0
R

, k0
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in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H
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(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c
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is again the coefficient
of the gravitational anomaly. The right-moving central charge
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R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)
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symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)
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is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)
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symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)
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symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)
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R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c
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of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)
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symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
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for the bulk gauge symmetries
G

i

and SU(2)

l

can also be extracted from the anomaly poly-
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])

c0
L

= 3C ·C � 9K ·C + 6 , c0
R

= 3C ·C � 3K ·C + 6 ,
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where K is the canonical class of B, and it has a SU(2)
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cur-
rent algebra at level k0
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= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem
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These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom
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= 4, ccom
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= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
l

= �1.
One can easily see that the central charges c0

L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.

The 2d SCFT on strings with charge Q↵ in the 6d super-
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c
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is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)

I

symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
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is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)
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symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)
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symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])
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theory models after removing the center of mass contributions
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from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H
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(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY
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. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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(0, 4) SCFT at low energy. As discussed in the 10d cases, the
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non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
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aȧ

,�
a
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c

R

� c
L

is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)

I

symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)

I

is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)

I

symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)

I

symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)

R

R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c

R

of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)

R

symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
the central charges c

L

, c
R

are given by

c
L

= 3Q ·Q� 9Q · a+ 2 , c
R

= 3Q ·Q� 3Q · a . (20)

The central charges k
i

and k
l

for the bulk gauge symmetries
G

i

and SU(2)

l

can also be extracted from the anomaly poly-
nomial. We find

k
i

= Q · b
i

, k
l

=

1

2

(Q ·Q+Q · a+ 2) . (21)

A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])

c0
L

= 3C ·C � 9K ·C + 6 , c0
R

= 3C ·C � 3K ·C + 6 ,
(22)

where K is the canonical class of B, and it has a SU(2)

l

cur-
rent algebra at level k0

l

= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem

C · C +K · C = 2g � 2 . (23)

These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom

L

= 4, ccom
R

= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
l

= �1.
One can easily see that the central charges c0

L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.



Central Charges
• The anomaly polynomial after removing contributions from the com 

dofs that decouple in the IR SCFT:

• The central charges can be read off from the coefficients of the 
gravitational anomaly and the R-symmetry anomaly.

• It is possible that an accidental symmetry emerges in the IR and 
becomes the R-symmetry. It is also possible that the worldsheet theory 
degenerates to a product of SCFTs with different IR R-symmetries.

• This happens for strings in local SCFTs or little string theories 
embedded in SUGRA.  

• Completeness allows us to focus on strings that give rise to a single 
interacting SCFT at low energy without the accidental symmetry.

4

for the two-form fields B↵

2

and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.

The 2d SCFT on strings with charge Q↵ in the 6d super-
gravity theory has the anomaly polynomial of this form
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This result involves the contribution from the center of mass

degrees of freedom which decouples in the IR SCFT. The
center of mass modes consist of 4 bosons common to left-
and right-movers and 4 right-moving fermions and they form
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Therefore the anomaly polynomial of the 2d worldsheet the-
ory after removing the center of mass contributions becomes

I 0
4

= I
4

� Icom
4

= �3Q · a�1

12

p
1

(T
2

) +

1

4

X

i

Q · b
i

TrF 2

i

� Q ·Q�Q · a
2

c
2

(R) +

Q ·Q+Q · a+2

2

c
2

(l) . (19)

The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c

R

� c
L

is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)

I

symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)

I

is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)

I

symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)

I

symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)

R

R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c

R

of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)

R

symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
the central charges c
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, c
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are given by
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= 3Q ·Q� 9Q · a+ 2 , c
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= 3Q ·Q� 3Q · a . (20)

The central charges k
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and k
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for the bulk gauge symmetries
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and SU(2)
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can also be extracted from the anomaly poly-
nomial. We find
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])
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L

= 3C ·C � 9K ·C + 6 , c0
R

= 3C ·C � 3K ·C + 6 ,
(22)

where K is the canonical class of B, and it has a SU(2)

l

cur-
rent algebra at level k0

l

= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem

C · C +K · C = 2g � 2 . (23)

These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom

L

= 4, ccom
R

= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
l

= �1.
One can easily see that the central charges c0

L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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for the two-form fields B↵

2

and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.

The 2d SCFT on strings with charge Q↵ in the 6d super-
gravity theory has the anomaly polynomial of this form
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This result involves the contribution from the center of mass

degrees of freedom which decouples in the IR SCFT. The
center of mass modes consist of 4 bosons common to left-
and right-movers and 4 right-moving fermions and they form
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Therefore the anomaly polynomial of the 2d worldsheet the-
ory after removing the center of mass contributions becomes
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c

R

� c
L

is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)

I

symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)

I

is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)

I

symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)

I

symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)

R

R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c

R

of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)
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symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
the central charges c
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, c
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are given by
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= 3Q ·Q� 9Q · a+ 2 , c
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The central charges k
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and k
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for the bulk gauge symmetries
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and SU(2)

l

can also be extracted from the anomaly poly-
nomial. We find
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])
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= 3C ·C � 9K ·C + 6 , c0
R

= 3C ·C � 3K ·C + 6 ,
(22)

where K is the canonical class of B, and it has a SU(2)

l

cur-
rent algebra at level k0

l

= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem

C · C +K · C = 2g � 2 . (23)

These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom

L

= 4, ccom
R

= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
l

= �1.
One can easily see that the central charges c0

L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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for the two-form fields B↵

2

and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.

The 2d SCFT on strings with charge Q↵ in the 6d super-
gravity theory has the anomaly polynomial of this form
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Therefore the anomaly polynomial of the 2d worldsheet the-
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c

R

� c
L

is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)
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symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)

I

is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)

I

symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)

I

symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)
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R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c
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of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)
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symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
the central charges c
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, c
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are given by
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= 3Q ·Q� 3Q · a . (20)

The central charges k
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and k
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and SU(2)
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can also be extracted from the anomaly poly-
nomial. We find
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])
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= 3C ·C � 9K ·C + 6 , c0
R

= 3C ·C � 3K ·C + 6 ,
(22)

where K is the canonical class of B, and it has a SU(2)

l

cur-
rent algebra at level k0

l

= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem

C · C +K · C = 2g � 2 . (23)

These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom

L

= 4, ccom
R

= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
l

= �1.
One can easily see that the central charges c0

L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.

SO(4) = SU(2)l × SU(2)R : transverse ℝ4



Central Charges and F-theory
• For strings with a non-degenerate IR SCFT, R-symmetry = SU(2)R :

• The ’t Hooft anomalies for the bulk gauge symmetries Gi and SU(2)l :

• F-theory on elliptic Calabi-Yau 3-folds → 6d N=(1,0) SUGRA.
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for the two-form fields B↵

2

and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.
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This result involves the contribution from the center of mass

degrees of freedom which decouples in the IR SCFT. The
center of mass modes consist of 4 bosons common to left-
and right-movers and 4 right-moving fermions and they form
a free hypermultiplet (X
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) where a, ȧ are indices for
SU(2)

l

⇥ SU(2)

R

. They contribute to the anomaly as

Icom
4

= � 1

12

p
1

(T
2

)� c
2

(l) . (18)

Therefore the anomaly polynomial of the 2d worldsheet the-
ory after removing the center of mass contributions becomes
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c

R

� c
L

is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)

I

symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)

I

is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)

I

symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)

I

symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)

R

R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c

R

of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)

R

symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
the central charges c

L

, c
R

are given by

c
L

= 3Q ·Q� 9Q · a+ 2 , c
R

= 3Q ·Q� 3Q · a . (20)

The central charges k
i

and k
l

for the bulk gauge symmetries
G

i

and SU(2)

l

can also be extracted from the anomaly poly-
nomial. We find
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])

c0
L

= 3C ·C � 9K ·C + 6 , c0
R

= 3C ·C � 3K ·C + 6 ,
(22)

where K is the canonical class of B, and it has a SU(2)

l

cur-
rent algebra at level k0

l

= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem

C · C +K · C = 2g � 2 . (23)

These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom

L

= 4, ccom
R

= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
l

= �1.
One can easily see that the central charges c0

L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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for the two-form fields B↵

2

and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c

R

� c
L

is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)
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symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)

I

is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)

I

symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)
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symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)
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R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c
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of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)
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try. For a non-degenerate 2d SCFT on a supergravity string,
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are given by
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])
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R

= 3C ·C � 3K ·C + 6 ,
(22)

where K is the canonical class of B, and it has a SU(2)

l

cur-
rent algebra at level k0

l

= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem

C · C +K · C = 2g � 2 . (23)

These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom

L

= 4, ccom
R

= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
l

= �1.
One can easily see that the central charges c0

L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.

The general setup

F-theory on Yn with base Bn−1

D3-brane on R1,1 × C

C a curve in base C ⊂ Bn−1

This talk: Single D3 with C not contained in discriminant locus ∆

• C is transverse to 7-branes on Bn−1

• C intersects 7-branes in isolated points on Bn−1

M-theory dual descriptions via T-duality see talk by S. Schäfer-Nameki

• transverse to D3-string on R1,1: M5-brane

• parallel to D3-string on R1,1: M2-brane

This talk: We will describe theory directly in language of F-Theory

via topological duality twist [Martucci’14]

F–Theory 2017, Trieste – p.5

Strings with charge Q:
D3-branes wrapping
genus g curve C=Q

in the base



Comparison to F-theory
• The 2d SCFT for a D3-brane wrapping a genus g curve C inside B:

where K=canonical class of B, and the genus g of the curve can be 
computed by the Riemann-Roch theorem:

• Again, this includes the com contributions:

• Removing the com contributions gives perfect agreement with the 
anomaly inflow results by identifying:
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for the two-form fields B↵

2

and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.

The 2d SCFT on strings with charge Q↵ in the 6d super-
gravity theory has the anomaly polynomial of this form
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This result involves the contribution from the center of mass

degrees of freedom which decouples in the IR SCFT. The
center of mass modes consist of 4 bosons common to left-
and right-movers and 4 right-moving fermions and they form
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aȧ
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Therefore the anomaly polynomial of the 2d worldsheet the-
ory after removing the center of mass contributions becomes
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c

R

� c
L

is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)

I

symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)

I

is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)

I

symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)

I

symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
superconformal algebra with an SU(2)

R

R-symmetry. The
conditions for this type of strings will be given below. The
right-moving central charge c

R

of these SCFTs can then be
read off from the anomaly coefficient of the SU(2)

R

symme-
try. For a non-degenerate 2d SCFT on a supergravity string,
the central charges c

L

, c
R

are given by
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= 3Q ·Q� 9Q · a+ 2 , c
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= 3Q ·Q� 3Q · a . (20)

The central charges k
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and k
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for the bulk gauge symmetries
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and SU(2)
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can also be extracted from the anomaly poly-
nomial. We find
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])
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= 3C ·C � 9K ·C + 6 , c0
R

= 3C ·C � 3K ·C + 6 ,
(22)

where K is the canonical class of B, and it has a SU(2)

l

cur-
rent algebra at level k0

l

= g� 1. Here the genus g of the curve
C can be computed by the Riemann-Roch theorem

C · C +K · C = 2g � 2 . (23)

These results again include the contribution from the center
of mass modes; 4 left- and 4 right-moving bosons and 4 right-
moving fermions. The central charges of the center of mass
modes are ccom

L

= 4, ccom
R

= 6 and, as discussed in [31], they
contribute to the SU(2)

l

current algebra by kcom
l

= �1.
One can easily see that the central charges c0

L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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and thus should exist by assump-
tion of completeness of the spectrum in a gravitational theory.
We shall consider BPS strings preserving half supersymme-
tries. The worldsheet theory on those strings gives rise to 2d
(0, 4) SCFT at low energy. As discussed in the 10d cases, the
degrees of freedom living on the string worldsheet can have
non-zero anomalies and these anomalies must be cancelled
through the anomaly inflow mechanism. The anomaly inflow
in 6d SCFTs was studied in [28, 29] (See also [30] for general-
ization to 6d supergravities from F-theory compactification).
See Appendix B for a brief review on the anomaly inflow to
2d strings in 6d SCFTs and 6d supergravity theories.
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c
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is again the coefficient
of the gravitational anomaly. The right-moving central charge
c
R

is associated to the anomaly coefficient of the R-symmetry
current. Here, we should be careful about the R-symmetry at
the IR fixed point. It is possible that an accidental symmetry
emerges at low energy and it takes over the role of the R-
symmetry in the IR (0, 4) superconformal algebra. It is also
possible that a 2d worldsheet theory degenerates to a product
of distinct SCFTs carrying different IR R-symmetries.

Indeed, this happens for the strings in local 6d SCFTs or lit-
tle string theories (LSTs) embedded in the supergravity theo-
ries. The 2d SCFTs on such strings have an accidental SU(2)
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symmetry in the decouping limit and this symmetry becomes

the SU(2) R-symmetry in the (0, 4) superconformal algebra.
This SU(2)
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is descended from the SU(2) R-symmetry of the
local 6d SCFTs or LSTs, but it is broken in the full supergrav-
ity theory. The free theory with the center of mass degrees
of freedom we discussed above also has the same accidental
SU(2)
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symmetry.
It is therefore crucial to identify the right R-symmetry in

the IR SCFTs. Only after this we can extract the correct cen-
tral charges in the IR SCFTs. From now on we will focus
on the strings in the 6d supergravity theory that give rise to
a single interacting SCFT at low energy without the acciden-
tal SU(2)
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symmetry. The IR SCFTs on such supergravity
strings (not strings in local 6d SCFTs or LSTs) have the (0, 4)
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conditions for this type of strings will be given below. The
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A large class of 6d (1, 0) supergravity theories can be en-
gineered in F-theory on elliptic Calabi-Yau 3-folds. In the
context of F-theory, the 2d SCFT with string charge Q arises
as a low energy theory on a D3-brane wrapping genus g curve
C = Q in the base B of the 3-fold. We can compare the above
results against the central charges of the strings coming from
D3-branes in F-theory. The 2d SCFT for a D3-brane wrapping
a genus g curve C inside B has the central charges [31] (See
also [30])
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L

, c0
R

, k0
l

in F-
theory models after removing the center of mass contributions
are in perfect agreement with the central charges of 2d SCFTs
from the anomaly inflow given in (20) and (21). To see this
agreement, one needs to identify the inner product ⌦ among
tensors with the intersection form in H

2

(B,Z), and map the
vector a to the canonical class K in the base of the elliptic
CY

3

. This comparison confirms our anomaly inflow compu-
tation for 2d strings in 6d supergravity theories.
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The central charges of the 2d SCFT can be extracted from
the anomaly polynomial as discussed in the previous section.
The relative central charges c
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is again the coefficient
of the gravitational anomaly. The right-moving central charge
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of distinct SCFTs carrying different IR R-symmetries.
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A large class of 6d (1, 0) supergravity theories can be en-
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(B,Z), and map the
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Consistency Conditions
• Consider the moduli space of a 6d SUGRA theory parametrized by 

scalars in the tensor multiplets + a scalar controls the overall volume.
• For this moduli space to be well-defined, ∃ a linear combination of 

these scalars J such that:

• In F-theory, J is the Kahler form J ∊ H1,1(B). The above conditions 
define a positive-definite Kahler cone on B. 

• The tension of a BPS string with charge Q is non-negative if 

• Unitarity on the IR SCFT of such a string give constraints on:

5

B. Consistency conditions

We shall now show that the consistency of 2d worldsheet
theories encoded in the central charges imposes additional
conditions on 6d supergravity theories.

Let us consider the moduli space of a 6d supergravity the-
ory that is parametrized by scalar fields in the tensor multiplets
as well as the scalar field in the hypermultiplet controlling the
overall volume of the tensor moduli space. From supergrav-
ity considerations, for this moduli space being well-defined,
we should be able to find a linear combination of these scalar
fields, which we call J , satisfying

J · J > 0 , J · b
i

> 0 , �J · a > 0 . (24)

This J plays the role of the central charge in the supersym-
metry algebra for the B-fields. The first condition stands for
the metric positivity of the tensor branch along J . The second
one is the condition for the gauge kinetic term along J to have
proper sign on the tensor moduli [19]. Otherwise, the gauge
kinetic term has a wrong sign and it leads to an instability. The
last condition ensures, through supersymmetry, the positivity
of the Gauss-Bonnet term in gravity [32]. While there have
been attempts to prove the positivity of the curvature-squared
corrections in D > 4 using e.g. unitarity [33], the singular UV
behavior due to graviton exchange prevents one from making
such spectral decomposition argument [34]. Here, we note
that even if we impose this last condition, there seem to be
infinitely many anomaly-free 6d supergravity theories (see [4]
for a review). We thus assume its validity, leaving a derivation
for future work.

In F-theory realization [35], this combination J corre-
sponds to a Kähler form J 2 H1,1

(B) of the base B. The
above conditions on J define a positive-definite Kähler cone
on B. We will call J a Kähler form for all 6d theories regard-
less of whether it has an F-theory realization.

The tensions of 2d BPS strings are determined with respect
to the Kähler form J . This imposes a condition Q · J � 0

on the string charge Q. A worldsheet theory has non-negative
tension only if Q · J � 0.

The strings with Q · J � 0 embedded in 6d supergrav-
ity theories must give rise to unitary 2d SCFTs. For a uni-
tary 2d CFT, the central charges must be non-negative, i.e.
c
L

, c
R

� 0. If the central charges computed through the
anomaly inflow for a string are negative, the corresponding
anomalies cannot be cancelled by a unitary 2d worldsheet the-
ory. This results in that the 6d supergravity theory with such
strings is inconsistent hosting non-vanishing anomalies along
the 2d string worldsheet, and it thus belongs to the swamp-
land. So we can use the anomaly inflow on 2d strings to ana-
lyze the consistency of 6d supergravity theories.

We remark that the strings in 6d SCFTs or little string the-
ories (LSTs) contained in 6d supergravity theories in general
lead to 2d CFTs having a negative value for c

R

given in (20).
For example, the unit string charge Q for a 2d string in the 6d
SO(8) non-Higgsable SCFT have the properties Q ·Q = �4

and Q ·K = +2. So the value for c
R

of this string with unit
charge Q is �18. This seems to say that the theory is inconsis-
tent since its central charge is negative c

R

< 0 by the formula

in (20). However, this is not the case. Note that the central
charge c

R

above is obtained by assuming the R-symmetry of
the low energy (0, 4) SCFT is the SU(2)

R

. As discussed, the
strings in local 6d SCFTs or LSTs have an accidental SU(2)

I

symmetry and this becomes the R-symmetry of the low energy
SCFT. Therefore c

R

in such strings is different from what we
computed above. The central charges of various worldsheet
theories in 6d SCFTs are computed in the literature [28, 29],
and one can check that those theories have positive central
charges c

R

, c
L

with respect to the SU(2)

I

R-symmetry.
We are interested in the configurations of a single string

in the 6d supergravity that have SU(2)

R

as the R-symmetry
in the superconformal algebra and that do not degenerate to
a product of disconnected 2d SCFTs at low energy. A sin-
gle string state has no bosonic zero mode along the transverse
R4 directions except the center of mass degrees of freedom.
This implies that, after removing the center of mass modes,
the worldsheet theory on a string contains the SU(2)

l

current
algebra realized on the left-movers. So the SU(2)

l

central
charges should be non-negative, i.e. k

l

� 0. In F-theory com-
pactification, this condition becomes a trivial condition saying
that g � 0 for a string wrapped on a genus g curve Q. The
central charge conditions c

R

� 0 and k
l

� 0 on these SCFTs
can be summarized as

Q ·Q � �1 , Q ·Q+Q · a � �2 . (25)

There are more conditions associated to the flavor central
charges k

i

= Q · b
i

. The flavor central charge measures the
index of the bulk fields charged under the gauge group G

i

on
the string background with charge Q. So it counts the number
of zero modes at the intersection between the tensor carrying
the gauge group G

i

and the tensor labelled by the string charge
Q. Unless the string degenerates to an instanton string of the
group G

i

, namely unless Q ⇠ b
i

, the flavor central charge can
receive contributions only from fermionic zero modes which
are in the left-moving sector. This means that the flavor central
charges of the 2d SCFTs on non-degenerate strings (not in
local 6d SCFTs or LSTs) in 6d supergravities should be non-
negative. In other words,

k
i

= Q · b
i

� 0 , (26)

for the strings we are interested in, where we used the con-
vention that left-movers have positive contributions to flavor
central charges. In the F-theory viewpoint, the condition (26)
is the same as the condition that the curve class Q is effective
and irreducible within the Mori cone of the Kähler base B.

Note that a 2d theory on instanton strings can have right-
movers associated to bosonic zero modes parametrizing the
moduli space of G

i

instantons. These right-movers can pro-
vide negative contributions to the flavor central charges. How-
ever, such instanton strings correspond to the strings in local
6d SCFTs or 6d LSTs. When a string degenerate to a prod-
uct of the instanton strings, the low energy theory will include
2d theories for the strings in local 6d SCFTs or LSTs which
have the accidental SU(2)

I

R-symmetry. As discussed above,
we are not interested in the worldsheet theories with SU(2)

I

R-symmetry. So we shall only focus on strings and the assoc-
itated 2d SCFTs satisfying the condition (26) as well as (25).
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B. Consistency conditions

We shall now show that the consistency of 2d worldsheet
theories encoded in the central charges imposes additional
conditions on 6d supergravity theories.

Let us consider the moduli space of a 6d supergravity the-
ory that is parametrized by scalar fields in the tensor multiplets
as well as the scalar field in the hypermultiplet controlling the
overall volume of the tensor moduli space. From supergrav-
ity considerations, for this moduli space being well-defined,
we should be able to find a linear combination of these scalar
fields, which we call J , satisfying

J · J > 0 , J · b
i

> 0 , �J · a > 0 . (24)

This J plays the role of the central charge in the supersym-
metry algebra for the B-fields. The first condition stands for
the metric positivity of the tensor branch along J . The second
one is the condition for the gauge kinetic term along J to have
proper sign on the tensor moduli [19]. Otherwise, the gauge
kinetic term has a wrong sign and it leads to an instability. The
last condition ensures, through supersymmetry, the positivity
of the Gauss-Bonnet term in gravity [32]. While there have
been attempts to prove the positivity of the curvature-squared
corrections in D > 4 using e.g. unitarity [33], the singular UV
behavior due to graviton exchange prevents one from making
such spectral decomposition argument [34]. Here, we note
that even if we impose this last condition, there seem to be
infinitely many anomaly-free 6d supergravity theories (see [4]
for a review). We thus assume its validity, leaving a derivation
for future work.

In F-theory realization [35], this combination J corre-
sponds to a Kähler form J 2 H1,1

(B) of the base B. The
above conditions on J define a positive-definite Kähler cone
on B. We will call J a Kähler form for all 6d theories regard-
less of whether it has an F-theory realization.

The tensions of 2d BPS strings are determined with respect
to the Kähler form J . This imposes a condition Q · J � 0

on the string charge Q. A worldsheet theory has non-negative
tension only if Q · J � 0.

The strings with Q · J � 0 embedded in 6d supergrav-
ity theories must give rise to unitary 2d SCFTs. For a uni-
tary 2d CFT, the central charges must be non-negative, i.e.
c
L

, c
R

� 0. If the central charges computed through the
anomaly inflow for a string are negative, the corresponding
anomalies cannot be cancelled by a unitary 2d worldsheet the-
ory. This results in that the 6d supergravity theory with such
strings is inconsistent hosting non-vanishing anomalies along
the 2d string worldsheet, and it thus belongs to the swamp-
land. So we can use the anomaly inflow on 2d strings to ana-
lyze the consistency of 6d supergravity theories.

We remark that the strings in 6d SCFTs or little string the-
ories (LSTs) contained in 6d supergravity theories in general
lead to 2d CFTs having a negative value for c

R

given in (20).
For example, the unit string charge Q for a 2d string in the 6d
SO(8) non-Higgsable SCFT have the properties Q ·Q = �4

and Q ·K = +2. So the value for c
R

of this string with unit
charge Q is �18. This seems to say that the theory is inconsis-
tent since its central charge is negative c

R

< 0 by the formula

in (20). However, this is not the case. Note that the central
charge c

R

above is obtained by assuming the R-symmetry of
the low energy (0, 4) SCFT is the SU(2)

R

. As discussed, the
strings in local 6d SCFTs or LSTs have an accidental SU(2)
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symmetry and this becomes the R-symmetry of the low energy
SCFT. Therefore c

R

in such strings is different from what we
computed above. The central charges of various worldsheet
theories in 6d SCFTs are computed in the literature [28, 29],
and one can check that those theories have positive central
charges c
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with respect to the SU(2)
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R-symmetry.
We are interested in the configurations of a single string

in the 6d supergravity that have SU(2)

R

as the R-symmetry
in the superconformal algebra and that do not degenerate to
a product of disconnected 2d SCFTs at low energy. A sin-
gle string state has no bosonic zero mode along the transverse
R4 directions except the center of mass degrees of freedom.
This implies that, after removing the center of mass modes,
the worldsheet theory on a string contains the SU(2)
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current
algebra realized on the left-movers. So the SU(2)
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central
charges should be non-negative, i.e. k
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� 0. In F-theory com-
pactification, this condition becomes a trivial condition saying
that g � 0 for a string wrapped on a genus g curve Q. The
central charge conditions c

R

� 0 and k
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� 0 on these SCFTs
can be summarized as

Q ·Q � �1 , Q ·Q+Q · a � �2 . (25)

There are more conditions associated to the flavor central
charges k
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= Q · b
i

. The flavor central charge measures the
index of the bulk fields charged under the gauge group G

i

on
the string background with charge Q. So it counts the number
of zero modes at the intersection between the tensor carrying
the gauge group G

i

and the tensor labelled by the string charge
Q. Unless the string degenerates to an instanton string of the
group G

i

, namely unless Q ⇠ b
i

, the flavor central charge can
receive contributions only from fermionic zero modes which
are in the left-moving sector. This means that the flavor central
charges of the 2d SCFTs on non-degenerate strings (not in
local 6d SCFTs or LSTs) in 6d supergravities should be non-
negative. In other words,

k
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= Q · b
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� 0 , (26)

for the strings we are interested in, where we used the con-
vention that left-movers have positive contributions to flavor
central charges. In the F-theory viewpoint, the condition (26)
is the same as the condition that the curve class Q is effective
and irreducible within the Mori cone of the Kähler base B.

Note that a 2d theory on instanton strings can have right-
movers associated to bosonic zero modes parametrizing the
moduli space of G

i

instantons. These right-movers can pro-
vide negative contributions to the flavor central charges. How-
ever, such instanton strings correspond to the strings in local
6d SCFTs or 6d LSTs. When a string degenerate to a prod-
uct of the instanton strings, the low energy theory will include
2d theories for the strings in local 6d SCFTs or LSTs which
have the accidental SU(2)

I

R-symmetry. As discussed above,
we are not interested in the worldsheet theories with SU(2)

I

R-symmetry. So we shall only focus on strings and the assoc-
itated 2d SCFTs satisfying the condition (26) as well as (25).

cL, cR, kl, ki



Consistency Conditions
• Consider the moduli space of a 6d SUGRA theory parametrized by 

scalars in the tensor multiplets + a scalar controls the overall volume.
• For this moduli space to be well-defined, ∃ a linear combination of 

these scalars J such that:

• In F-theory, J is the Kahler form J ∊ H1,1(B). The above conditions 
define a positive-definite Kahler cone on B. 

• The tension of a BPS string with charge Q is non-negative if 

• Unitarity on the IR SCFT of such a string give constraints on:

5
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We shall now show that the consistency of 2d worldsheet
theories encoded in the central charges imposes additional
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overall volume of the tensor moduli space. From supergrav-
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behavior due to graviton exchange prevents one from making
such spectral decomposition argument [34]. Here, we note
that even if we impose this last condition, there seem to be
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for a review). We thus assume its validity, leaving a derivation
for future work.
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(B) of the base B. The
above conditions on J define a positive-definite Kähler cone
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The tensions of 2d BPS strings are determined with respect
to the Kähler form J . This imposes a condition Q · J � 0

on the string charge Q. A worldsheet theory has non-negative
tension only if Q · J � 0.
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� 0. If the central charges computed through the
anomaly inflow for a string are negative, the corresponding
anomalies cannot be cancelled by a unitary 2d worldsheet the-
ory. This results in that the 6d supergravity theory with such
strings is inconsistent hosting non-vanishing anomalies along
the 2d string worldsheet, and it thus belongs to the swamp-
land. So we can use the anomaly inflow on 2d strings to ana-
lyze the consistency of 6d supergravity theories.
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ories (LSTs) contained in 6d supergravity theories in general
lead to 2d CFTs having a negative value for c
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vide negative contributions to the flavor central charges. How-
ever, such instanton strings correspond to the strings in local
6d SCFTs or 6d LSTs. When a string degenerate to a prod-
uct of the instanton strings, the low energy theory will include
2d theories for the strings in local 6d SCFTs or LSTs which
have the accidental SU(2)

I

R-symmetry. As discussed above,
we are not interested in the worldsheet theories with SU(2)

I

R-symmetry. So we shall only focus on strings and the assoc-
itated 2d SCFTs satisfying the condition (26) as well as (25).
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B. Consistency conditions

We shall now show that the consistency of 2d worldsheet
theories encoded in the central charges imposes additional
conditions on 6d supergravity theories.

Let us consider the moduli space of a 6d supergravity the-
ory that is parametrized by scalar fields in the tensor multiplets
as well as the scalar field in the hypermultiplet controlling the
overall volume of the tensor moduli space. From supergrav-
ity considerations, for this moduli space being well-defined,
we should be able to find a linear combination of these scalar
fields, which we call J , satisfying

J · J > 0 , J · b
i

> 0 , �J · a > 0 . (24)

This J plays the role of the central charge in the supersym-
metry algebra for the B-fields. The first condition stands for
the metric positivity of the tensor branch along J . The second
one is the condition for the gauge kinetic term along J to have
proper sign on the tensor moduli [19]. Otherwise, the gauge
kinetic term has a wrong sign and it leads to an instability. The
last condition ensures, through supersymmetry, the positivity
of the Gauss-Bonnet term in gravity [32]. While there have
been attempts to prove the positivity of the curvature-squared
corrections in D > 4 using e.g. unitarity [33], the singular UV
behavior due to graviton exchange prevents one from making
such spectral decomposition argument [34]. Here, we note
that even if we impose this last condition, there seem to be
infinitely many anomaly-free 6d supergravity theories (see [4]
for a review). We thus assume its validity, leaving a derivation
for future work.

In F-theory realization [35], this combination J corre-
sponds to a Kähler form J 2 H1,1

(B) of the base B. The
above conditions on J define a positive-definite Kähler cone
on B. We will call J a Kähler form for all 6d theories regard-
less of whether it has an F-theory realization.

The tensions of 2d BPS strings are determined with respect
to the Kähler form J . This imposes a condition Q · J � 0

on the string charge Q. A worldsheet theory has non-negative
tension only if Q · J � 0.

The strings with Q · J � 0 embedded in 6d supergrav-
ity theories must give rise to unitary 2d SCFTs. For a uni-
tary 2d CFT, the central charges must be non-negative, i.e.
c
L

, c
R

� 0. If the central charges computed through the
anomaly inflow for a string are negative, the corresponding
anomalies cannot be cancelled by a unitary 2d worldsheet the-
ory. This results in that the 6d supergravity theory with such
strings is inconsistent hosting non-vanishing anomalies along
the 2d string worldsheet, and it thus belongs to the swamp-
land. So we can use the anomaly inflow on 2d strings to ana-
lyze the consistency of 6d supergravity theories.

We remark that the strings in 6d SCFTs or little string the-
ories (LSTs) contained in 6d supergravity theories in general
lead to 2d CFTs having a negative value for c

R

given in (20).
For example, the unit string charge Q for a 2d string in the 6d
SO(8) non-Higgsable SCFT have the properties Q ·Q = �4

and Q ·K = +2. So the value for c
R

of this string with unit
charge Q is �18. This seems to say that the theory is inconsis-
tent since its central charge is negative c

R

< 0 by the formula

in (20). However, this is not the case. Note that the central
charge c

R

above is obtained by assuming the R-symmetry of
the low energy (0, 4) SCFT is the SU(2)

R

. As discussed, the
strings in local 6d SCFTs or LSTs have an accidental SU(2)

I

symmetry and this becomes the R-symmetry of the low energy
SCFT. Therefore c

R

in such strings is different from what we
computed above. The central charges of various worldsheet
theories in 6d SCFTs are computed in the literature [28, 29],
and one can check that those theories have positive central
charges c

R

, c
L

with respect to the SU(2)

I

R-symmetry.
We are interested in the configurations of a single string

in the 6d supergravity that have SU(2)

R

as the R-symmetry
in the superconformal algebra and that do not degenerate to
a product of disconnected 2d SCFTs at low energy. A sin-
gle string state has no bosonic zero mode along the transverse
R4 directions except the center of mass degrees of freedom.
This implies that, after removing the center of mass modes,
the worldsheet theory on a string contains the SU(2)

l

current
algebra realized on the left-movers. So the SU(2)

l

central
charges should be non-negative, i.e. k

l

� 0. In F-theory com-
pactification, this condition becomes a trivial condition saying
that g � 0 for a string wrapped on a genus g curve Q. The
central charge conditions c

R

� 0 and k
l

� 0 on these SCFTs
can be summarized as

Q ·Q � �1 , Q ·Q+Q · a � �2 . (25)

There are more conditions associated to the flavor central
charges k

i

= Q · b
i

. The flavor central charge measures the
index of the bulk fields charged under the gauge group G

i

on
the string background with charge Q. So it counts the number
of zero modes at the intersection between the tensor carrying
the gauge group G

i

and the tensor labelled by the string charge
Q. Unless the string degenerates to an instanton string of the
group G

i

, namely unless Q ⇠ b
i

, the flavor central charge can
receive contributions only from fermionic zero modes which
are in the left-moving sector. This means that the flavor central
charges of the 2d SCFTs on non-degenerate strings (not in
local 6d SCFTs or LSTs) in 6d supergravities should be non-
negative. In other words,

k
i

= Q · b
i

� 0 , (26)

for the strings we are interested in, where we used the con-
vention that left-movers have positive contributions to flavor
central charges. In the F-theory viewpoint, the condition (26)
is the same as the condition that the curve class Q is effective
and irreducible within the Mori cone of the Kähler base B.

Note that a 2d theory on instanton strings can have right-
movers associated to bosonic zero modes parametrizing the
moduli space of G

i

instantons. These right-movers can pro-
vide negative contributions to the flavor central charges. How-
ever, such instanton strings correspond to the strings in local
6d SCFTs or 6d LSTs. When a string degenerate to a prod-
uct of the instanton strings, the low energy theory will include
2d theories for the strings in local 6d SCFTs or LSTs which
have the accidental SU(2)

I

R-symmetry. As discussed above,
we are not interested in the worldsheet theories with SU(2)

I

R-symmetry. So we shall only focus on strings and the assoc-
itated 2d SCFTs satisfying the condition (26) as well as (25).

cL, cR, kl, ki

see [Hamada, Noumi, GS]
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proper sign on the tensor moduli [19]. Otherwise, the gauge
kinetic term has a wrong sign and it leads to an instability. The
last condition ensures, through supersymmetry, the positivity
of the Gauss-Bonnet term in gravity [32]. While there have
been attempts to prove the positivity of the curvature-squared
corrections in D > 4 using e.g. unitarity [33], the singular UV
behavior due to graviton exchange prevents one from making
such spectral decomposition argument [34]. Here, we note
that even if we impose this last condition, there seem to be
infinitely many anomaly-free 6d supergravity theories (see [4]
for a review). We thus assume its validity, leaving a derivation
for future work.
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(B) of the base B. The
above conditions on J define a positive-definite Kähler cone
on B. We will call J a Kähler form for all 6d theories regard-
less of whether it has an F-theory realization.

The tensions of 2d BPS strings are determined with respect
to the Kähler form J . This imposes a condition Q · J � 0

on the string charge Q. A worldsheet theory has non-negative
tension only if Q · J � 0.
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tary 2d CFT, the central charges must be non-negative, i.e.
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� 0. If the central charges computed through the
anomaly inflow for a string are negative, the corresponding
anomalies cannot be cancelled by a unitary 2d worldsheet the-
ory. This results in that the 6d supergravity theory with such
strings is inconsistent hosting non-vanishing anomalies along
the 2d string worldsheet, and it thus belongs to the swamp-
land. So we can use the anomaly inflow on 2d strings to ana-
lyze the consistency of 6d supergravity theories.

We remark that the strings in 6d SCFTs or little string the-
ories (LSTs) contained in 6d supergravity theories in general
lead to 2d CFTs having a negative value for c
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given in (20).
For example, the unit string charge Q for a 2d string in the 6d
SO(8) non-Higgsable SCFT have the properties Q ·Q = �4
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of this string with unit
charge Q is �18. This seems to say that the theory is inconsis-
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in (20). However, this is not the case. Note that the central
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the low energy (0, 4) SCFT is the SU(2)
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. As discussed, the
strings in local 6d SCFTs or LSTs have an accidental SU(2)
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symmetry and this becomes the R-symmetry of the low energy
SCFT. Therefore c
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in such strings is different from what we
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and one can check that those theories have positive central
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in the superconformal algebra and that do not degenerate to
a product of disconnected 2d SCFTs at low energy. A sin-
gle string state has no bosonic zero mode along the transverse
R4 directions except the center of mass degrees of freedom.
This implies that, after removing the center of mass modes,
the worldsheet theory on a string contains the SU(2)
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algebra realized on the left-movers. So the SU(2)
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charges should be non-negative, i.e. k
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pactification, this condition becomes a trivial condition saying
that g � 0 for a string wrapped on a genus g curve Q. The
central charge conditions c
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� 0 on these SCFTs
can be summarized as

Q ·Q � �1 , Q ·Q+Q · a � �2 . (25)

There are more conditions associated to the flavor central
charges k
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= Q · b
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. The flavor central charge measures the
index of the bulk fields charged under the gauge group G
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on
the string background with charge Q. So it counts the number
of zero modes at the intersection between the tensor carrying
the gauge group G
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and the tensor labelled by the string charge
Q. Unless the string degenerates to an instanton string of the
group G
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, namely unless Q ⇠ b
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, the flavor central charge can
receive contributions only from fermionic zero modes which
are in the left-moving sector. This means that the flavor central
charges of the 2d SCFTs on non-degenerate strings (not in
local 6d SCFTs or LSTs) in 6d supergravities should be non-
negative. In other words,

k
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= Q · b
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� 0 , (26)

for the strings we are interested in, where we used the con-
vention that left-movers have positive contributions to flavor
central charges. In the F-theory viewpoint, the condition (26)
is the same as the condition that the curve class Q is effective
and irreducible within the Mori cone of the Kähler base B.

Note that a 2d theory on instanton strings can have right-
movers associated to bosonic zero modes parametrizing the
moduli space of G
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instantons. These right-movers can pro-
vide negative contributions to the flavor central charges. How-
ever, such instanton strings correspond to the strings in local
6d SCFTs or 6d LSTs. When a string degenerate to a prod-
uct of the instanton strings, the low energy theory will include
2d theories for the strings in local 6d SCFTs or LSTs which
have the accidental SU(2)
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R-symmetry. As discussed above,
we are not interested in the worldsheet theories with SU(2)
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R-symmetry. So we shall only focus on strings and the assoc-
itated 2d SCFTs satisfying the condition (26) as well as (25).
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For such 2d SCFTs, we have G
i

current algebra with level
k
i

. Using supersymmetry algebra in the context of BPS
strings, one can show that the current algebra is on the left-
movers in the (0, 4) SCFTs and its central charge contribution
is given in (11). Therefore, we find the following constraint
on the 2d worldsheet SCFT in the 6d supergravity:

X

i

k
i

· dimG
i

k
i

+ h_
i

 c
L

. (27)

So the 2d SCFTs on strings satisfying the conditions in the
equations (25) and (26) must have central charges constrained
by the equation (27). Otherwise, the 2d worldsheet theory
is non-unitary. In conclusion, we claim that a 6d supergravity
theory embedding 2d strings whose worldsheet theory violates
the condition (27) is inconsistent and it therefore belongs to
the swampland.

C. Examples

The basic structure of our examples is as follows. For each
one we have the ⌦, a, b

i

given by anomaly cancellation condi-
tions. We use this to find the allowed ranges for J and choose
a particular J in the allowed region. We then use this to re-
strict the allowed string charges Q’s and use that to compute
central charges c

R

, c
L

and k
l

, k
i

and see if we have any con-
tradictions with unitarity.

Let us first consider the 6d supergravity theory coupled to
T = 9 tensors with SU(N)⇥SU(N) gauge group and two bi-
fundamental hypermultiplets introduced in [8] (See also [20]
for T = 1 models). The anomaly polynomial of this model
factorizes for an arbitrary N and hence it seems that they pro-
vide an infinite family of consistent 6d supergravity theories.
It was however shown in [8] that these models have no F-
theory realization at large enough N .

Let us examine these models with 2d strings to see if the
consistency conditions of the worldsheet theory on the strings
can provide any bound on N .

We can always choose a tensor basis such that the bilinear
form ⌦ and the vectors a, b

1

, b
2

are given as follows [8]:

⌦ = diag(+1, (�1)

9

) , a = (�3, (+1)

9

) ,

b
1

= (1,�1,�1,�1, 06) , b
2

= (2, 0, 0, 0, (�1)

6

) . (28)

In this basis, one can easily see that a Kähler form chosen as
J = (1, 09) satisfies the conditions J2 > 0, J · b > 0 and
J · a < 0.

Consider a string of a generic charge Q = (q
0

, q
1

, · · · , q
9

)

with q
i

2 Z. This string with q
0

> 0 has a positive tension
with respect to J . The conditions (25) and (26) on the IR
SCFT for this string can be summarized as
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where q
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and q
4:9

⌘
P

9

i=4

q
i

. In addition, the
flavor central charges are restricted by the unitarity bound (27)
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, (30)

where the left-moving central charges is

c
L

= 3(q2
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) + 9(3q
0

+ q
1:3

+ q
4:9

) + 2 . (31)

As discussed above, if this bound is violated for any Q satis-
fying (29), the anomaly inflow from the bulk 6d supergravity
theory cannot be cancelled by a unitary 2d CFT which renders
the 6d supergravity inconsistent at the quantum level.

The bound (30) gives the strongest constraint on N of the
6d supergravity theory when the left-hand side is maximized,
namely k

i

’s are minimized, while the right-hand side is min-
imized. This implies the strongest bound can be given by a
string with q2

0

�
P

i

q2
i

= �1 and k
1

= 0, k
2

= 1. This oc-
curs for Q = (1,�1, 0, 0,�1, 05). The central charge bound
for the string configuration being unitary is

k
2

(N2 � 1)

k
2

+N
 c

L

! N2 � 1

1 +N
 8 ! N  9 . (32)

Therefore the 6d supergravity theory with N > 9 belongs to
the swampland containing non-unitary string configurations.
This bound is stronger than the bound N  12 from the Ko-
daira condition in F-theory [8]. It is interesting that we can
thus rule out would be purely geometric constructions which
could have in principle realized this model for N = 10, 11, 12.
In other words our arguments can be used to teach us some
facts about the geometry of elliptic Calabi-Yau threefolds!
Also, it is reassuring that this bound does not rule out the
string theory realization for N = 8 given in [36, 37] and all the
N  8 theories which one can obtain from it by partial Hig-
gsing. Remarkably, our worldsheet analysis provides a new
bound on the rank of gauge groups in the 6d bulk supergravity
theory and the result is consistent with the F-theory argument
and also the known string theory realization. It would be in-
teresting to see if one can construct the N = 9 case which we
were not able to rule out.

The second example is the 6d supergravity with T = 1 and
SU(N) gauge group coupled to one symmetric and N � 8

fundamental hypermultiplets first introduced in [8, 38]. The
rank of the gauge group is bounded as N  30 from the 6d
anomaly cancellation conditions. For this model, we are free
to choose a tensor basis giving

⌦ = diag(1,�1) , a = (�3, 1) , b = (0,�1) . (33)

The Kähler form can always be chosen as J = (n, 1) with
n2 > 1 and n > 0. This theory has no F-theory realization
because, when we identify the base B with a Hirzebruch sur-
face F

1

, the tensor for b cannot be mapped to any effective
curve class [8].

We shall now see if the consistency conditions on string
configurations of this 6d theory can provide a stronger bound
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strings, one can show that the current algebra is on the left-
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So the 2d SCFTs on strings satisfying the conditions in the
equations (25) and (26) must have central charges constrained
by the equation (27). Otherwise, the 2d worldsheet theory
is non-unitary. In conclusion, we claim that a 6d supergravity
theory embedding 2d strings whose worldsheet theory violates
the condition (27) is inconsistent and it therefore belongs to
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factorizes for an arbitrary N and hence it seems that they pro-
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It was however shown in [8] that these models have no F-
theory realization at large enough N .

Let us examine these models with 2d strings to see if the
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As discussed above, if this bound is violated for any Q satis-
fying (29), the anomaly inflow from the bulk 6d supergravity
theory cannot be cancelled by a unitary 2d CFT which renders
the 6d supergravity inconsistent at the quantum level.

The bound (30) gives the strongest constraint on N of the
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Therefore the 6d supergravity theory with N > 9 belongs to
the swampland containing non-unitary string configurations.
This bound is stronger than the bound N  12 from the Ko-
daira condition in F-theory [8]. It is interesting that we can
thus rule out would be purely geometric constructions which
could have in principle realized this model for N = 10, 11, 12.
In other words our arguments can be used to teach us some
facts about the geometry of elliptic Calabi-Yau threefolds!
Also, it is reassuring that this bound does not rule out the
string theory realization for N = 8 given in [36, 37] and all the
N  8 theories which one can obtain from it by partial Hig-
gsing. Remarkably, our worldsheet analysis provides a new
bound on the rank of gauge groups in the 6d bulk supergravity
theory and the result is consistent with the F-theory argument
and also the known string theory realization. It would be in-
teresting to see if one can construct the N = 9 case which we
were not able to rule out.
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, the tensor for b cannot be mapped to any effective
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configurations of this 6d theory can provide a stronger bound
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So the 2d SCFTs on strings satisfying the conditions in the
equations (25) and (26) must have central charges constrained
by the equation (27). Otherwise, the 2d worldsheet theory
is non-unitary. In conclusion, we claim that a 6d supergravity
theory embedding 2d strings whose worldsheet theory violates
the condition (27) is inconsistent and it therefore belongs to
the swampland.

C. Examples

The basic structure of our examples is as follows. For each
one we have the ⌦, a, b
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tions. We use this to find the allowed ranges for J and choose
a particular J in the allowed region. We then use this to re-
strict the allowed string charges Q’s and use that to compute
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Let us first consider the 6d supergravity theory coupled to
T = 9 tensors with SU(N)⇥SU(N) gauge group and two bi-
fundamental hypermultiplets introduced in [8] (See also [20]
for T = 1 models). The anomaly polynomial of this model
factorizes for an arbitrary N and hence it seems that they pro-
vide an infinite family of consistent 6d supergravity theories.
It was however shown in [8] that these models have no F-
theory realization at large enough N .

Let us examine these models with 2d strings to see if the
consistency conditions of the worldsheet theory on the strings
can provide any bound on N .

We can always choose a tensor basis such that the bilinear
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In this basis, one can easily see that a Kähler form chosen as
J = (1, 09) satisfies the conditions J2 > 0, J · b > 0 and
J · a < 0.

Consider a string of a generic charge Q = (q
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As discussed above, if this bound is violated for any Q satis-
fying (29), the anomaly inflow from the bulk 6d supergravity
theory cannot be cancelled by a unitary 2d CFT which renders
the 6d supergravity inconsistent at the quantum level.

The bound (30) gives the strongest constraint on N of the
6d supergravity theory when the left-hand side is maximized,
namely k
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’s are minimized, while the right-hand side is min-
imized. This implies the strongest bound can be given by a
string with q2
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Therefore the 6d supergravity theory with N > 9 belongs to
the swampland containing non-unitary string configurations.
This bound is stronger than the bound N  12 from the Ko-
daira condition in F-theory [8]. It is interesting that we can
thus rule out would be purely geometric constructions which
could have in principle realized this model for N = 10, 11, 12.
In other words our arguments can be used to teach us some
facts about the geometry of elliptic Calabi-Yau threefolds!
Also, it is reassuring that this bound does not rule out the
string theory realization for N = 8 given in [36, 37] and all the
N  8 theories which one can obtain from it by partial Hig-
gsing. Remarkably, our worldsheet analysis provides a new
bound on the rank of gauge groups in the 6d bulk supergravity
theory and the result is consistent with the F-theory argument
and also the known string theory realization. It would be in-
teresting to see if one can construct the N = 9 case which we
were not able to rule out.

The second example is the 6d supergravity with T = 1 and
SU(N) gauge group coupled to one symmetric and N � 8

fundamental hypermultiplets first introduced in [8, 38]. The
rank of the gauge group is bounded as N  30 from the 6d
anomaly cancellation conditions. For this model, we are free
to choose a tensor basis giving

⌦ = diag(1,�1) , a = (�3, 1) , b = (0,�1) . (33)

The Kähler form can always be chosen as J = (n, 1) with
n2 > 1 and n > 0. This theory has no F-theory realization
because, when we identify the base B with a Hirzebruch sur-
face F

1

, the tensor for b cannot be mapped to any effective
curve class [8].

We shall now see if the consistency conditions on string
configurations of this 6d theory can provide a stronger bound
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As discussed above, if this bound is violated for any Q satis-
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As discussed above, if this bound is violated for any Q satis-
fying (29), the anomaly inflow from the bulk 6d supergravity
theory cannot be cancelled by a unitary 2d CFT which renders
the 6d supergravity inconsistent at the quantum level.
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Therefore the 6d supergravity theory with N > 9 belongs to
the swampland containing non-unitary string configurations.
This bound is stronger than the bound N  12 from the Ko-
daira condition in F-theory [8]. It is interesting that we can
thus rule out would be purely geometric constructions which
could have in principle realized this model for N = 10, 11, 12.
In other words our arguments can be used to teach us some
facts about the geometry of elliptic Calabi-Yau threefolds!
Also, it is reassuring that this bound does not rule out the
string theory realization for N = 8 given in [36, 37] and all the
N  8 theories which one can obtain from it by partial Hig-
gsing. Remarkably, our worldsheet analysis provides a new
bound on the rank of gauge groups in the 6d bulk supergravity
theory and the result is consistent with the F-theory argument
and also the known string theory realization. It would be in-
teresting to see if one can construct the N = 9 case which we
were not able to rule out.
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fundamental hypermultiplets first introduced in [8, 38]. The
rank of the gauge group is bounded as N  30 from the 6d
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The Kähler form can always be chosen as J = (n, 1) with
n2 > 1 and n > 0. This theory has no F-theory realization
because, when we identify the base B with a Hirzebruch sur-
face F
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, the tensor for b cannot be mapped to any effective
curve class [8].

We shall now see if the consistency conditions on string
configurations of this 6d theory can provide a stronger bound
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strict the allowed string charges Q’s and use that to compute
central charges c

R

, c
L

and k
l

, k
i

and see if we have any con-
tradictions with unitarity.

Let us first consider the 6d supergravity theory coupled to
T = 9 tensors with SU(N)⇥SU(N) gauge group and two bi-
fundamental hypermultiplets introduced in [8] (See also [20]
for T = 1 models). The anomaly polynomial of this model
factorizes for an arbitrary N and hence it seems that they pro-
vide an infinite family of consistent 6d supergravity theories.
It was however shown in [8] that these models have no F-
theory realization at large enough N .

Let us examine these models with 2d strings to see if the
consistency conditions of the worldsheet theory on the strings
can provide any bound on N .

We can always choose a tensor basis such that the bilinear
form ⌦ and the vectors a, b

1

, b
2

are given as follows [8]:

⌦ = diag(+1, (�1)

9

) , a = (�3, (+1)

9

) ,

b
1

= (1,�1,�1,�1, 06) , b
2

= (2, 0, 0, 0, (�1)
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) . (28)

In this basis, one can easily see that a Kähler form chosen as
J = (1, 09) satisfies the conditions J2 > 0, J · b > 0 and
J · a < 0.

Consider a string of a generic charge Q = (q
0

, q
1

, · · · , q
9

)

with q
i

2 Z. This string with q
0

> 0 has a positive tension
with respect to J . The conditions (25) and (26) on the IR
SCFT for this string can be summarized as
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. In addition, the
flavor central charges are restricted by the unitarity bound (27)
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As discussed above, if this bound is violated for any Q satis-
fying (29), the anomaly inflow from the bulk 6d supergravity
theory cannot be cancelled by a unitary 2d CFT which renders
the 6d supergravity inconsistent at the quantum level.

The bound (30) gives the strongest constraint on N of the
6d supergravity theory when the left-hand side is maximized,
namely k

i

’s are minimized, while the right-hand side is min-
imized. This implies the strongest bound can be given by a
string with q2

0

�
P

i

q2
i

= �1 and k
1

= 0, k
2

= 1. This oc-
curs for Q = (1,�1, 0, 0,�1, 05). The central charge bound
for the string configuration being unitary is

k
2

(N2 � 1)

k
2

+N
 c

L

! N2 � 1
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Therefore the 6d supergravity theory with N > 9 belongs to
the swampland containing non-unitary string configurations.
This bound is stronger than the bound N  12 from the Ko-
daira condition in F-theory [8]. It is interesting that we can
thus rule out would be purely geometric constructions which
could have in principle realized this model for N = 10, 11, 12.
In other words our arguments can be used to teach us some
facts about the geometry of elliptic Calabi-Yau threefolds!
Also, it is reassuring that this bound does not rule out the
string theory realization for N = 8 given in [36, 37] and all the
N  8 theories which one can obtain from it by partial Hig-
gsing. Remarkably, our worldsheet analysis provides a new
bound on the rank of gauge groups in the 6d bulk supergravity
theory and the result is consistent with the F-theory argument
and also the known string theory realization. It would be in-
teresting to see if one can construct the N = 9 case which we
were not able to rule out.

The second example is the 6d supergravity with T = 1 and
SU(N) gauge group coupled to one symmetric and N � 8

fundamental hypermultiplets first introduced in [8, 38]. The
rank of the gauge group is bounded as N  30 from the 6d
anomaly cancellation conditions. For this model, we are free
to choose a tensor basis giving

⌦ = diag(1,�1) , a = (�3, 1) , b = (0,�1) . (33)

The Kähler form can always be chosen as J = (n, 1) with
n2 > 1 and n > 0. This theory has no F-theory realization
because, when we identify the base B with a Hirzebruch sur-
face F

1

, the tensor for b cannot be mapped to any effective
curve class [8].

We shall now see if the consistency conditions on string
configurations of this 6d theory can provide a stronger bound

q2
0 −

9

∑
i=1

q2
i = − 1 and k1 = 0, k2 = 1
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• The central charge bound for the string worldsheet to be unitary:

• 6d anomaly-free theories with N > 9 belong to the swampland.
• Stronger than the Kodaira condition in F-theory: N ≤ 12: anomaly 

argument can teach us something about elliptic Calabi-Yau 3-folds!
• Reassuring that the swampland bound does not rule out the string 

realization for N=8 in terms of a K3 orientifold [Dabholkar, Park, ’96].

• Remarkably, we obtain a bound on the rank of the gauge groups that 
is consistent with F-theory argument and known string realization.

• Interesting to see if the N=9 case can be constructed.
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For such 2d SCFTs, we have G
i

current algebra with level
k
i

. Using supersymmetry algebra in the context of BPS
strings, one can show that the current algebra is on the left-
movers in the (0, 4) SCFTs and its central charge contribution
is given in (11). Therefore, we find the following constraint
on the 2d worldsheet SCFT in the 6d supergravity:
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i
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+ h_
i

 c
L

. (27)

So the 2d SCFTs on strings satisfying the conditions in the
equations (25) and (26) must have central charges constrained
by the equation (27). Otherwise, the 2d worldsheet theory
is non-unitary. In conclusion, we claim that a 6d supergravity
theory embedding 2d strings whose worldsheet theory violates
the condition (27) is inconsistent and it therefore belongs to
the swampland.

C. Examples

The basic structure of our examples is as follows. For each
one we have the ⌦, a, b

i

given by anomaly cancellation condi-
tions. We use this to find the allowed ranges for J and choose
a particular J in the allowed region. We then use this to re-
strict the allowed string charges Q’s and use that to compute
central charges c

R

, c
L

and k
l

, k
i

and see if we have any con-
tradictions with unitarity.

Let us first consider the 6d supergravity theory coupled to
T = 9 tensors with SU(N)⇥SU(N) gauge group and two bi-
fundamental hypermultiplets introduced in [8] (See also [20]
for T = 1 models). The anomaly polynomial of this model
factorizes for an arbitrary N and hence it seems that they pro-
vide an infinite family of consistent 6d supergravity theories.
It was however shown in [8] that these models have no F-
theory realization at large enough N .

Let us examine these models with 2d strings to see if the
consistency conditions of the worldsheet theory on the strings
can provide any bound on N .

We can always choose a tensor basis such that the bilinear
form ⌦ and the vectors a, b

1

, b
2

are given as follows [8]:

⌦ = diag(+1, (�1)
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In this basis, one can easily see that a Kähler form chosen as
J = (1, 09) satisfies the conditions J2 > 0, J · b > 0 and
J · a < 0.

Consider a string of a generic charge Q = (q
0

, q
1

, · · · , q
9

)

with q
i

2 Z. This string with q
0

> 0 has a positive tension
with respect to J . The conditions (25) and (26) on the IR
SCFT for this string can be summarized as
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flavor central charges are restricted by the unitarity bound (27)
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As discussed above, if this bound is violated for any Q satis-
fying (29), the anomaly inflow from the bulk 6d supergravity
theory cannot be cancelled by a unitary 2d CFT which renders
the 6d supergravity inconsistent at the quantum level.

The bound (30) gives the strongest constraint on N of the
6d supergravity theory when the left-hand side is maximized,
namely k

i

’s are minimized, while the right-hand side is min-
imized. This implies the strongest bound can be given by a
string with q2

0

�
P

i

q2
i

= �1 and k
1

= 0, k
2

= 1. This oc-
curs for Q = (1,�1, 0, 0,�1, 05). The central charge bound
for the string configuration being unitary is

k
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 8 ! N  9 . (32)

Therefore the 6d supergravity theory with N > 9 belongs to
the swampland containing non-unitary string configurations.
This bound is stronger than the bound N  12 from the Ko-
daira condition in F-theory [8]. It is interesting that we can
thus rule out would be purely geometric constructions which
could have in principle realized this model for N = 10, 11, 12.
In other words our arguments can be used to teach us some
facts about the geometry of elliptic Calabi-Yau threefolds!
Also, it is reassuring that this bound does not rule out the
string theory realization for N = 8 given in [36, 37] and all the
N  8 theories which one can obtain from it by partial Hig-
gsing. Remarkably, our worldsheet analysis provides a new
bound on the rank of gauge groups in the 6d bulk supergravity
theory and the result is consistent with the F-theory argument
and also the known string theory realization. It would be in-
teresting to see if one can construct the N = 9 case which we
were not able to rule out.

The second example is the 6d supergravity with T = 1 and
SU(N) gauge group coupled to one symmetric and N � 8

fundamental hypermultiplets first introduced in [8, 38]. The
rank of the gauge group is bounded as N  30 from the 6d
anomaly cancellation conditions. For this model, we are free
to choose a tensor basis giving

⌦ = diag(1,�1) , a = (�3, 1) , b = (0,�1) . (33)

The Kähler form can always be chosen as J = (n, 1) with
n2 > 1 and n > 0. This theory has no F-theory realization
because, when we identify the base B with a Hirzebruch sur-
face F

1

, the tensor for b cannot be mapped to any effective
curve class [8].

We shall now see if the consistency conditions on string
configurations of this 6d theory can provide a stronger bound
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• 6d SUGRA with T=1 & SU(N) gauge group coupled to one symmetric 

+ (N-8) fundamental hypermultiplets is anomaly free for N ≤ 30.

• The Kahler form can be chosen as J = (n,1) with n2 > 1 and n > 0.
• No F-theory realization: when the base B is identified with Hirzebruch 

surface F1, b cannot be mapped to an effective curve class.
• Consider a string with charge Q=(q1, q2) satisfying cR ≥ 0, kl ≥ 0:

• This string has positive tension if:
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For such 2d SCFTs, we have G
i

current algebra with level
k
i

. Using supersymmetry algebra in the context of BPS
strings, one can show that the current algebra is on the left-
movers in the (0, 4) SCFTs and its central charge contribution
is given in (11). Therefore, we find the following constraint
on the 2d worldsheet SCFT in the 6d supergravity:

X

i

k
i

· dimG
i

k
i

+ h_
i
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L

. (27)

So the 2d SCFTs on strings satisfying the conditions in the
equations (25) and (26) must have central charges constrained
by the equation (27). Otherwise, the 2d worldsheet theory
is non-unitary. In conclusion, we claim that a 6d supergravity
theory embedding 2d strings whose worldsheet theory violates
the condition (27) is inconsistent and it therefore belongs to
the swampland.

C. Examples

The basic structure of our examples is as follows. For each
one we have the ⌦, a, b

i

given by anomaly cancellation condi-
tions. We use this to find the allowed ranges for J and choose
a particular J in the allowed region. We then use this to re-
strict the allowed string charges Q’s and use that to compute
central charges c

R

, c
L

and k
l

, k
i

and see if we have any con-
tradictions with unitarity.

Let us first consider the 6d supergravity theory coupled to
T = 9 tensors with SU(N)⇥SU(N) gauge group and two bi-
fundamental hypermultiplets introduced in [8] (See also [20]
for T = 1 models). The anomaly polynomial of this model
factorizes for an arbitrary N and hence it seems that they pro-
vide an infinite family of consistent 6d supergravity theories.
It was however shown in [8] that these models have no F-
theory realization at large enough N .

Let us examine these models with 2d strings to see if the
consistency conditions of the worldsheet theory on the strings
can provide any bound on N .

We can always choose a tensor basis such that the bilinear
form ⌦ and the vectors a, b

1

, b
2

are given as follows [8]:
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In this basis, one can easily see that a Kähler form chosen as
J = (1, 09) satisfies the conditions J2 > 0, J · b > 0 and
J · a < 0.

Consider a string of a generic charge Q = (q
0

, q
1

, · · · , q
9

)

with q
i

2 Z. This string with q
0

> 0 has a positive tension
with respect to J . The conditions (25) and (26) on the IR
SCFT for this string can be summarized as
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As discussed above, if this bound is violated for any Q satis-
fying (29), the anomaly inflow from the bulk 6d supergravity
theory cannot be cancelled by a unitary 2d CFT which renders
the 6d supergravity inconsistent at the quantum level.

The bound (30) gives the strongest constraint on N of the
6d supergravity theory when the left-hand side is maximized,
namely k

i

’s are minimized, while the right-hand side is min-
imized. This implies the strongest bound can be given by a
string with q2

0

�
P

i

q2
i

= �1 and k
1

= 0, k
2

= 1. This oc-
curs for Q = (1,�1, 0, 0,�1, 05). The central charge bound
for the string configuration being unitary is
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1 +N
 8 ! N  9 . (32)

Therefore the 6d supergravity theory with N > 9 belongs to
the swampland containing non-unitary string configurations.
This bound is stronger than the bound N  12 from the Ko-
daira condition in F-theory [8]. It is interesting that we can
thus rule out would be purely geometric constructions which
could have in principle realized this model for N = 10, 11, 12.
In other words our arguments can be used to teach us some
facts about the geometry of elliptic Calabi-Yau threefolds!
Also, it is reassuring that this bound does not rule out the
string theory realization for N = 8 given in [36, 37] and all the
N  8 theories which one can obtain from it by partial Hig-
gsing. Remarkably, our worldsheet analysis provides a new
bound on the rank of gauge groups in the 6d bulk supergravity
theory and the result is consistent with the F-theory argument
and also the known string theory realization. It would be in-
teresting to see if one can construct the N = 9 case which we
were not able to rule out.

The second example is the 6d supergravity with T = 1 and
SU(N) gauge group coupled to one symmetric and N � 8

fundamental hypermultiplets first introduced in [8, 38]. The
rank of the gauge group is bounded as N  30 from the 6d
anomaly cancellation conditions. For this model, we are free
to choose a tensor basis giving

⌦ = diag(1,�1) , a = (�3, 1) , b = (0,�1) . (33)

The Kähler form can always be chosen as J = (n, 1) with
n2 > 1 and n > 0. This theory has no F-theory realization
because, when we identify the base B with a Hirzebruch sur-
face F

1

, the tensor for b cannot be mapped to any effective
curve class [8].

We shall now see if the consistency conditions on string
configurations of this 6d theory can provide a stronger bound
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on the rank N . Consider a generic string with Q = (q
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satisfying the conditions (25), (26), namely
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Also, nq
1
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from J ·Q > 0. These conditions can be then
simplified, for the strings interacting with the gauge group, as
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> 0 . (35)

The constraint on the central charges
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) + 9(3q
1

+ q
2

) + 2 (36)

can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8

)

k for arbitrary large k, which was introduced in
[8]. The vectors a and b

i

in the anomaly polynomial satisfy
a ·b

i

= 10, b
i

·b
j

= �2�
ij

with i, j = 1, · · · , k. When k � 3,
one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,

b
i

= (�1,�1, 04(i�1), (�1)

3,�3, 08k+8�4i

) , (37)

The Kähler form in this basis can be chosen as

J = (�j
0

, 04k+1, 14k+8

) , (4k + 8)/3 > j
0

>
p
4k + 8 .

(38)

Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k

l

� 0, c
R

� 0 and k
i

� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k

i

= Q · b
i

= q:

kX

i=1

248k
i

k
i

+ 30

 c
L

! k
248q

q + 30

 3q(q � 9) + 2 (39)

cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17

) , a = (�3, 117) ,

b
1

= (0, 1, (�1)

11, 05) , (40)

for k = 1 and

⌦ = diag(1, (�1)

25

) , a = (�3, 125) ,

b
1

= (0, 1, (�1)

11, 013) , b
2

= (0, 013, 1, (�1)

11

) , (41)

for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.
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can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
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one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,

b
i

= (�1,�1, 04(i�1), (�1)

3,�3, 08k+8�4i

) , (37)

The Kähler form in this basis can be chosen as

J = (�j
0

, 04k+1, 14k+8

) , (4k + 8)/3 > j
0

>
p
4k + 8 .

(38)

Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k

l

� 0, c
R

� 0 and k
i

� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k

i

= Q · b
i

= q:

kX

i=1

248k
i

k
i

+ 30

 c
L

! k
248q

q + 30

 3q(q � 9) + 2 (39)

cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17

) , a = (�3, 117) ,

b
1

= (0, 1, (�1)

11, 05) , (40)

for k = 1 and

⌦ = diag(1, (�1)

25

) , a = (�3, 125) ,

b
1

= (0, 1, (�1)

11, 013) , b
2

= (0, 013, 1, (�1)

11

) , (41)

for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.

[Kumar, Morrison, Taylor ‘10] 



Example 2
• These constraints can be simplified as:

• The unitarity bound on the central charge:

• The most stringent bound is N ≤ 117 which occurs when Q=(3,1).
• This bound is weaker than the bound from anomaly cancellation.
• Interesting to see if there are inconsistencies revealed by other 

means or else construct N≤ 30 models from other string theories.
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on the rank N . Consider a generic string with Q = (q
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Also, nq
1
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2

from J ·Q > 0. These conditions can be then
simplified, for the strings interacting with the gauge group, as
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2
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The constraint on the central charges
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) + 2 (36)

can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8

)

k for arbitrary large k, which was introduced in
[8]. The vectors a and b

i

in the anomaly polynomial satisfy
a ·b

i

= 10, b
i

·b
j

= �2�
ij

with i, j = 1, · · · , k. When k � 3,
one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,

b
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= (�1,�1, 04(i�1), (�1)

3,�3, 08k+8�4i

) , (37)

The Kähler form in this basis can be chosen as
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, 04k+1, 14k+8

) , (4k + 8)/3 > j
0

>
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(38)

Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k
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� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k
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= Q · b
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= q:
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248k
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248q

q + 30

 3q(q � 9) + 2 (39)

cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17

) , a = (�3, 117) ,

b
1

= (0, 1, (�1)

11, 05) , (40)

for k = 1 and

⌦ = diag(1, (�1)

25

) , a = (�3, 125) ,

b
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= (0, 1, (�1)

11, 013) , b
2

= (0, 013, 1, (�1)

11

) , (41)

for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.

7
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Also, nq
1
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from J ·Q > 0. These conditions can be then
simplified, for the strings interacting with the gauge group, as
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The constraint on the central charges
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) + 9(3q
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can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8

)

k for arbitrary large k, which was introduced in
[8]. The vectors a and b

i

in the anomaly polynomial satisfy
a ·b

i

= 10, b
i

·b
j

= �2�
ij

with i, j = 1, · · · , k. When k � 3,
one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,

b
i

= (�1,�1, 04(i�1), (�1)

3,�3, 08k+8�4i

) , (37)

The Kähler form in this basis can be chosen as

J = (�j
0

, 04k+1, 14k+8

) , (4k + 8)/3 > j
0

>
p
4k + 8 .

(38)

Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k

l

� 0, c
R

� 0 and k
i

� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k

i

= Q · b
i

= q:

kX

i=1

248k
i

k
i

+ 30

 c
L

! k
248q

q + 30

 3q(q � 9) + 2 (39)

cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17

) , a = (�3, 117) ,

b
1

= (0, 1, (�1)

11, 05) , (40)

for k = 1 and

⌦ = diag(1, (�1)

25

) , a = (�3, 125) ,

b
1

= (0, 1, (�1)

11, 013) , b
2

= (0, 013, 1, (�1)

11

) , (41)

for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.



Example 3
• We found a bound on a family of 6d models with T=8k+9 and gauge 

group G=(E8)k for arbitrary k introduced in [Kumar, Morrison, Taylor ‘10]

• The anomaly coefficients of 6d SUGRA:

• For k ≥ 3, one can choose a basis of tensors:

• The Kahler form can be chosen:

• Consider a string with charge Q=(-q, 08k+9) whose tension is positive 
if q > 0. Furthermore, cR ≥ 0, kl ≥ 0 can be satisfied for q > 2.
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on the rank N . Consider a generic string with Q = (q
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satisfying the conditions (25), (26), namely
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Also, nq
1
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from J ·Q > 0. These conditions can be then
simplified, for the strings interacting with the gauge group, as
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The constraint on the central charges
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can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8

)

k for arbitrary large k, which was introduced in
[8]. The vectors a and b

i

in the anomaly polynomial satisfy
a ·b

i

= 10, b
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·b
j

= �2�
ij

with i, j = 1, · · · , k. When k � 3,
one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,
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Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k

l

� 0, c
R

� 0 and k
i

� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k

i

= Q · b
i

= q:

kX

i=1

248k
i

k
i

+ 30

 c
L

! k
248q

q + 30

 3q(q � 9) + 2 (39)

cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17
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) , (41)

for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.
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can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8
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k for arbitrary large k, which was introduced in
[8]. The vectors a and b
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in the anomaly polynomial satisfy
a ·b
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with i, j = 1, · · · , k. When k � 3,
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cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17
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for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.
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on the rank N . Consider a generic string with Q = (q
1

, q
2

)

satisfying the conditions (25), (26), namely

q2
1
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2

� �1 , q2
1

� q2
2

� 3q
1

� q
2

� �2 ,

k = Q · b = q
2

� 0 . (34)

Also, nq
1

> q
2

from J ·Q > 0. These conditions can be then
simplified, for the strings interacting with the gauge group, as

q
1

� 3 q
1

� 2 � q
2

> 0 . (35)

The constraint on the central charges

q
2

(N2 � 1)

q
2

+N
 3(q2

1

� q2
2

) + 9(3q
1

+ q
2

) + 2 (36)

can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8

)

k for arbitrary large k, which was introduced in
[8]. The vectors a and b

i

in the anomaly polynomial satisfy
a ·b

i

= 10, b
i

·b
j

= �2�
ij

with i, j = 1, · · · , k. When k � 3,
one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,

b
i

= (�1,�1, 04(i�1), (�1)

3,�3, 08k+8�4i

) , (37)

The Kähler form in this basis can be chosen as

J = (�j
0

, 04k+1, 14k+8

) , (4k + 8)/3 > j
0

>
p
4k + 8 .

(38)

Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k

l

� 0, c
R

� 0 and k
i

� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k

i

= Q · b
i

= q:

kX

i=1

248k
i

k
i

+ 30

 c
L

! k
248q

q + 30

 3q(q � 9) + 2 (39)

cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17

) , a = (�3, 117) ,

b
1

= (0, 1, (�1)

11, 05) , (40)

for k = 1 and

⌦ = diag(1, (�1)

25

) , a = (�3, 125) ,

b
1

= (0, 1, (�1)

11, 013) , b
2

= (0, 013, 1, (�1)

11

) , (41)

for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.



Example 3
• However, the bound on the levels of the current algebras ki= Q⋅bi =q:

is not satisfied by strings with 3 ≤ q ≤ 14 for any k ≥ 3 (→ swampland)
• This anomaly inflow argument does not rule out models for k ≤ 2.
• For k=1,2, there exists another solutions of Ω and a, bi:

• The above analysis do not apply. Indeed, the k=2 model can be 
realized by compactification of M theory on K3 x (S1/ℤ2) with 24 M5-
branes on the interval [Seiberg, Witten ’96].
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Also, nq
1
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from J ·Q > 0. These conditions can be then
simplified, for the strings interacting with the gauge group, as
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> 0 . (35)

The constraint on the central charges
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can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8

)

k for arbitrary large k, which was introduced in
[8]. The vectors a and b

i

in the anomaly polynomial satisfy
a ·b

i

= 10, b
i

·b
j

= �2�
ij

with i, j = 1, · · · , k. When k � 3,
one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,

b
i

= (�1,�1, 04(i�1), (�1)

3,�3, 08k+8�4i

) , (37)

The Kähler form in this basis can be chosen as

J = (�j
0

, 04k+1, 14k+8

) , (4k + 8)/3 > j
0

>
p
4k + 8 .

(38)

Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k

l

� 0, c
R

� 0 and k
i

� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k

i

= Q · b
i

= q:

kX

i=1

248k
i

k
i

+ 30

 c
L

! k
248q

q + 30

 3q(q � 9) + 2 (39)

cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17

) , a = (�3, 117) ,

b
1

= (0, 1, (�1)

11, 05) , (40)

for k = 1 and

⌦ = diag(1, (�1)

25

) , a = (�3, 125) ,

b
1

= (0, 1, (�1)

11, 013) , b
2

= (0, 013, 1, (�1)

11

) , (41)

for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.

7

on the rank N . Consider a generic string with Q = (q
1

, q
2

)

satisfying the conditions (25), (26), namely

q2
1

� q2
2

� �1 , q2
1

� q2
2

� 3q
1

� q
2

� �2 ,

k = Q · b = q
2

� 0 . (34)

Also, nq
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from J ·Q > 0. These conditions can be then
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can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8

)

k for arbitrary large k, which was introduced in
[8]. The vectors a and b

i

in the anomaly polynomial satisfy
a ·b

i

= 10, b
i

·b
j

= �2�
ij

with i, j = 1, · · · , k. When k � 3,
one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,

b
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= (�1,�1, 04(i�1), (�1)

3,�3, 08k+8�4i
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The Kähler form in this basis can be chosen as
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, 04k+1, 14k+8

) , (4k + 8)/3 > j
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>
p
4k + 8 .

(38)

Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k
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� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k
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= Q · b
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= q:

kX

i=1

248k
i

k
i

+ 30
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cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17

) , a = (�3, 117) ,
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11, 05) , (40)

for k = 1 and
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for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.
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Also, nq
1
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from J ·Q > 0. These conditions can be then
simplified, for the strings interacting with the gauge group, as
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can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8

)

k for arbitrary large k, which was introduced in
[8]. The vectors a and b

i

in the anomaly polynomial satisfy
a ·b

i

= 10, b
i

·b
j

= �2�
ij

with i, j = 1, · · · , k. When k � 3,
one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,

b
i

= (�1,�1, 04(i�1), (�1)

3,�3, 08k+8�4i
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The Kähler form in this basis can be chosen as

J = (�j
0

, 04k+1, 14k+8

) , (4k + 8)/3 > j
0

>
p
4k + 8 .

(38)

Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k

l
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� 0 and k
i

� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k

i

= Q · b
i

= q:

kX

i=1

248k
i

k
i

+ 30

 c
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248q

q + 30

 3q(q � 9) + 2 (39)

cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17

) , a = (�3, 117) ,

b
1

= (0, 1, (�1)

11, 05) , (40)

for k = 1 and

⌦ = diag(1, (�1)

25

) , a = (�3, 125) ,

b
1

= (0, 1, (�1)

11, 013) , b
2

= (0, 013, 1, (�1)

11

) , (41)

for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.

k=1

k=2



Example 4
• 6d SUGRA with T=0 and gauge group SU(8) coupled to an exotic 

hypermultiplet in the “box” representation [Kumar, Park, Taylor, ’10].

• Admits no F-theory realization. 6d anomaly cancellation sets 

• Strings with Q > 0 satisfy cR ≥ 0, kl ≥ 0, ki ≥ 0. 
• Most stringent constraint on cL is given by strings with minimal Q=1:

which is marginally satisfied!

7

on the rank N . Consider a generic string with Q = (q
1

, q
2

)

satisfying the conditions (25), (26), namely

q2
1

� q2
2

� �1 , q2
1

� q2
2

� 3q
1

� q
2

� �2 ,

k = Q · b = q
2

� 0 . (34)

Also, nq
1

> q
2

from J ·Q > 0. These conditions can be then
simplified, for the strings interacting with the gauge group, as

q
1

� 3 q
1

� 2 � q
2

> 0 . (35)

The constraint on the central charges

q
2

(N2 � 1)

q
2

+N
 3(q2

1

� q2
2

) + 9(3q
1

+ q
2

) + 2 (36)

can provide the strongest bound on N when Q = (3, 1), and
the bound is N  117. This bound is weaker than the bound
N  30 coming from the 6d anomaly cancellation conditions.
This may imply, unless another inconsistency is revealed by
any other means, that these 6d supergravity models with N 
30 are all consistent theories though they do not seem to admit
an F-theory realization.

The anomaly inflow consideration can provide a new bound
on a family of models with T = 8k + 9 and gauge group
G = (E

8

)

k for arbitrary large k, which was introduced in
[8]. The vectors a and b

i

in the anomaly polynomial satisfy
a ·b

i

= 10, b
i

·b
j

= �2�
ij

with i, j = 1, · · · , k. When k � 3,
one can choose a basis for tensors in [8] that gives rise to

⌦ = diag(1, (�1)

8k+9

) , a = (�3, 18k+9

) ,

b
i

= (�1,�1, 04(i�1), (�1)

3,�3, 08k+8�4i

) , (37)

The Kähler form in this basis can be chosen as

J = (�j
0

, 04k+1, 14k+8

) , (4k + 8)/3 > j
0

>
p
4k + 8 .

(38)

Now consider a string with charge Q = (�q, 08k+9

) in
this 6d model. This string has a positive tension if q > 0.
Moreover, the conditions k

l

� 0, c
R

� 0 and k
i

� 0 can be
satisfied if q > 2. However, the bound on the levels of flavor
current algebras k

i

= Q · b
i

= q:

kX

i=1

248k
i

k
i

+ 30

 c
L

! k
248q

q + 30

 3q(q � 9) + 2 (39)

cannot be satisfied by, for example, strings with charge 3 
q  14 for any k � 3. This result demonstrates that all
these 6d supergravity models for k � 3 endowed with the
bilinear form ⌦ and vectors a, b

i

given in (37) reveal non-
vanishing anomalies on the 2d strings, and therefore they are
in the swampland.

Note however that the 6d supergravity theories of this type
for k  2 are not ruled out by this analysis. When k = 1, 2,
there exists another solutions of ⌦ and a, b

i

cancelling the
anomalies, like this:

⌦ = diag(1, (�1)

17

) , a = (�3, 117) ,

b
1

= (0, 1, (�1)

11, 05) , (40)

for k = 1 and

⌦ = diag(1, (�1)

25

) , a = (�3, 125) ,

b
1

= (0, 1, (�1)

11, 013) , b
2

= (0, 013, 1, (�1)

11

) , (41)

for k = 2. Thus the above analysis does not apply to the k =

1, 2 cases. We do not find any string configuration showing
inconsistencies for these cases. Indeed, the 6d gravity theory
with k = 2 can be realized by the compactification of M-
theory on K3 ⇥ (S1/Z

2

), where we place 24 M5 branes on
the interval [39].

The last example is the 6d supergravity theory with T = 0

and gauge group SU(8) coupled to an exotic hypermultiplet in
the ‘box’ representation, which was introduced in [23]. This
theory cannot be realized in F-theory. The 6d anomaly can-
cellation sets the vectors as a = �3 and b = 8.

The 2d SCFTs on a string with charge Q > 0 in this the-
ory satisfy the conditions (25) and (26). The strongest con-
straint on the left-moving central charge is given by the mini-
mal string with Q = 1. The central charge constraint for this
model is marginally satisfied as

k ⇥ 63

k + 8

 c
L

! 31.5  32 for k = Q · b = 8 . (42)

Therefore at least as far as the unitarity constraint is concerned
this theory is not ruled out and the strings can consistently
couple to this 6d supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10d and
6d N = (1, 0) supergravity theories as seen from 2d strings
that couple to the 2-forms in the bulk. We have identified the
central charges of the worldsheet SCFTs on the strings using
the anomaly inflow from the bulk supergravity theory. The
unitarity of the worldsheet SCFTs associated to the central
charges leads to novel constraints on the allowed supergravity
models, that are not visible from the particle viewpoint.

In this paper, we analyzed only a handful of 6d supergravity
models. A large class of would-be consistent 6d supergravity
theories has been discussed in the literature, for example [8,
23, 38]. It might be possible to similarly rule out many such
models using more detailed constraints from string probes that
we considered in this paper. We leave this for future work.

It would be straightforward to generalize the anomaly in-
flow consideration discussed in this paper to other type of
branes coupled to the supergravity theories. Our discussion
in this paper is merely a starting point of a bigger program to
understand the consistency of quantum gravitational theories
in various dimensions by coupling them to all possible branes
and defects of the theories. We hope this program ultimately
provides a complete classification of consistent supergravity
theories in six- and perhaps also other dimensions, and more
broadly deepens our understanding of the swampland criteria.

a = − 3, b = 8



Summary



• String pheno continues to be a vital field that aims at extracting fundamental 
predictions on low energy physics from string theory/quantum gravity. 

• The Swampland program aims to identify the boundary of possibilities for 
QFTs that can be consistently coupled to gravity. Results of such 
investigations have broad phenomenological implications. 

• We initiated a program of using brane probes for a deeper understanding of 
the swampland conditions. 

• The method presented in [Kim, GS, Vafa] was recently used to bound the 
number of abelian gauge group factors in 6d gravitational theories with 
minimal SUSY and in their F-theoretic realizations [Lee, Weigand]. 

• Consistency between various types of branes and their interactions with one 
another may provide further constraints on the swampland. 

• This program may allow us to substantially cut down the # of string vacua, 
and more broadly deepens our understanding of the swampland criteria.

Summary


