Swampland Conjectures at the Limits of Field Space

Thomas W. Grimm

Utrecht University

Based on: 1811.02571 with Chongchuo Li, Eran Palti

1812.07548 with Irene Valenzuela, Pierre Corvilain

1905.00901 with Damian van de Heisteeg

Work in Progress with Irene & Chongchuo - asymptotic flux comactification

Introduction and general comments

Quantum consistent effective theories?

Important Question:

Which low energy effective theories are consistent with Quantum Gravity? What are the imprints of the underlying theory?

Quantum consistent effective theories?

Important Question:

Which low energy effective theories are consistent with Quantum Gravity? What are the imprints of the underlying theory?

Map out the set of four-dimensional effective theories from String Theory

theories arising from string theory

apparently consistent four-dimensional field theories

Quantum consistent effective theories?

Important Question:

Which low energy effective theories are consistent with Quantum Gravity? What are the imprints of the underlying theory?

Map out the set of four-dimensional effective theories from String Theory

Many important works on the Swampland

Plenary talks at this conference about the landscape/swampland:

Shiu, Montero, Marchesano, Savelli, Gray, Parameswaran, McAllister, Lukas, Anderson, Vafa, Valenzuela, Heidenreich, Grana, Blumenhagen, Wrase, Palti, Uranga, Taylor, Westphal, Van Riet, Hebecker, Ibanez, Tomasiello, Sethi, Halverson, Nelson, Krippendorf, Schafer-Nameki, Martucci, Garcia-Etxebarria, Quevedo, Cvetic, Faraggi, Choi, Heckman, Nilles, Dudas, Lüst

Many interesting parallel session talks!

And important works of our organizers:

Andriot, [Lee, Lerche, Weigand], Ruehle

Not possible to do justice!

Related motivation: Search for structure

- Well-known setting: Large volume compactification
 - Couplings in the effective action are determined by intersection numbers,
 Chern classes of compact CY space

$$K = -\operatorname{Log}\left(\frac{1}{6}\mathcal{K}_{IJK}v^{I}v^{J}v^{K} + \frac{\zeta(3)\chi}{32\pi^{2}}\right)$$

Related motivation: Search for structure

- Well-known setting: Large volume compactification
 - Couplings in the effective action are determined by intersection numbers,
 Chern classes of compact CY space

$$K = -\text{Log}\left(\frac{1}{6}\mathcal{K}_{IJK}v^Iv^Jv^K + \frac{\zeta(3)\chi}{32\pi^2}\right)$$

What is the structure dictating 'allowed' couplings?
 Example from the Kreuzer-Skarke list:

$$\{\mathcal{K}_{IJK}\} = \{\{\{2, 2, 2\}, \{2, 0, 2\}, \{2, 2, 2\}\}, \{\{2, 0, 2\}, \{0, 0, 0\}, \{2, 0, 0\}\}, \{\{2, 2, 2\}, \{2, 0, 0\}, \{2, 0, 0\}\}\}\}$$

Related motivation: Search for structure

- Well-known setting: Large volume compactification
 - Couplings in the effective action are determined by intersection numbers,
 Chern classes of compact CY space

$$K = -\text{Log}\left(\frac{1}{6}\mathcal{K}_{IJK}v^Iv^Jv^K + \frac{\zeta(3)\chi}{32\pi^2}\right)$$

What is the structure dictating 'allowed' couplings?
 Example from the Kreuzer-Skarke list:

$$\{\mathcal{K}_{IJK}\} = \{\{\{2, 2, 2\}, \{2, 0, 2\}, \{2, 2, 2\}\}, \{\{2, 0, 2\}, \{0, 0, 0\}, \{2, 0, 0\}\}, \{\{2, 2, 2\}, \{2, 0, 0\}, \{2, 0, 0\}\}\}\}$$

Can one set the red numbers to zero?

Swampland Distance Conjecture as a Guide

consider a moduli space and two points

[Ooguri, Vafa]

Swampland Distance Conjecture as a Guide

consider a moduli space and two points

[Ooguri, Vafa]

Swampland Distance Conjecture as a Guide

consider a moduli space and two points

[Ooguri, Vafa]

shortest geodesic between P, Q (length d(P,Q))

An infinite number of states become light on paths approaching an infinite distance point: $m(P) \propto M_P e^{-\gamma d(P,G)}$ as $d(P,Q) \gg 1$

signaling the breakdown of an effective description

⇒ universal structure near infinite distance points

Limits in Moduli Space

Limits in Moduli Space

■ In the following: restrict to geometric moduli spaces arising in Calabi-Yau compactifications: T², K3, CY₃, CY₄

⇒ Universal structure?!

Universal Structure at the Limits in Moduli Space

Moduli space of Calabi-Yau compactifications

- Consider complex structure moduli space \mathcal{M}_{cs} (Kähler as a mirror)

Kähler metric:
$$g_{I\bar{J}}=\partial_{z^I}\partial_{\bar{z}^J}K$$
 $K=-\log\Bigl[i\int_{\mathrm{CY}_n}\Omega\wedge\bar{\Omega}\Bigr]$

Moduli space of Calabi-Yau compactifications

- Consider complex structure moduli space \mathcal{M}_{cs} (Kähler as a mirror)

Kähler metric:
$$g_{Iar{J}}=\partial_{z^I}\partial_{ar{z}^J}K$$

Kähler metric:
$$g_{I\bar{J}} = \partial_{z^I}\partial_{\bar{z}^J}K$$
 $K = -\log\Big[i\int_{\mathrm{CY}_n} \Omega \wedge \bar{\Omega}\Big]$

- Periods of the (n,0)-from Ω

$$\mathbf{\Omega} = \mathbf{\Pi}^T \boldsymbol{\gamma}$$

$$\Pi^{\mathcal{I}} = \int_{\Gamma_{\mathcal{T}}} \Omega$$

Moduli space of Calabi-Yau compactifications

- Consider complex structure moduli space $\mathcal{M}_{\mathrm{cs}}$ (Kähler as a mirror)

Kähler metric:
$$g_{I\bar{J}}=\partial_{z^I}\partial_{\bar{z}^J}K$$
 $K=-\log\Bigl[i\int_{\mathrm{CY}_n}\Omega\wedge\bar{\Omega}\Bigr]$

- Periods of the (n,0)-from Ω

$$\Omega = \mathbf{\Pi}^T \boldsymbol{\gamma} \qquad \Pi^{\mathcal{I}} = \int_{\Gamma_{\mathcal{T}}} \Omega$$

Question: Is there a universal behavior of Π at the limits of the moduli space?

Limits are the points where Calabi-Yau manifold degenerates!

 \Rightarrow monodromy around singular loci: $\Pi(t+1,...) = T \cdot \Pi(t,...)$

- Limiting behavior of Π near degeneration points

$$t^1,...,t^n \rightarrow i\infty$$
 ζ^{κ} finite

$$\mathbf{\Pi} = e^{t^i N_i} \mathbf{a_0} + \mathcal{O}(e^{2\pi i t})$$

[Schmid]

(up to rescaling)

- Limiting behavior of Π near degeneration points

$$t^1,...,t^n \rightarrow i\infty \qquad \zeta^{\kappa} \text{ finite}$$

$$\mathbf{\Pi} = e^{t^i N_i} \mathbf{a_0} + \mathcal{O}(e^{2\pi i t})$$

[Schmid]

(up to rescaling)

log-monodromy: $N_i = \log T_i^u$ - nilpotent matrix $(N^k = 0, \text{ some k})$

- Limiting behavior of Π near degeneration points

$$t^1,...,t^n \rightarrow i\infty \qquad \zeta^{\kappa} \text{ finite}$$

$$\mathbf{\Pi} = e^{t^i N_i} \mathbf{a_0} + \mathcal{O}(e^{2\pi i t})$$

[Schmid]

(up to rescaling)

- log-monodromy: $N_i = \log T_i^u$ nilpotent matrix $(N^k = 0, \text{ some k})$
- 'limiting' vector $\mathbf{a}_0(\zeta)$ can depend on the coords not send to limit

- Limiting behavior of Π near degeneration points

$$t^1,...,t^n \rightarrow i\infty \qquad \zeta^{\kappa} \text{ finite}$$

$$\mathbf{\Pi} = e^{t^i N_i} \mathbf{a_0} + \mathcal{O}(e^{2\pi it})$$

[Schmid]

(up to rescaling)

Polynomial in *t*ⁱ
nilpotent orbit
("perturbative part")

Strongly suppressed in the limit

⇒ neglect

("non-perturbative part")

Emergence of an sl(2)ⁿ - algebra

Remarkably: can associate an $sl(2)^n$ - algebra to $N_i, \ \mathbf{a}_0$

[Cattani, Kaplan, Schmid]

n commuting sl(2)-triples: N_i^- , N_i^+ , Y_i

⇒ raising, lowering, level-operator

aside: need to fix sector in moduli space, or enhancement chain...later

Emergence of an sl(2)ⁿ - algebra

Remarkably: can associate an $sl(2)^n$ - algebra to N_i , a_0

[Cattani, Kaplan, Schmid]

n commuting sl(2)-triples:
$$N_i^-$$
, N_i^+ , Y_i

⇒ raising, lowering, level-operator

aside: need to fix sector in moduli space, or enhancement chain...later

Can split form into fine splitting associated to the asymptotic region

$$H^n(Y_n,\mathbb{Q}) = \sum_{l_1,...,l_n} V_{l_1,...,l_n} \quad eigenspaces of \ Y_{(i)} = Y_1 + ... + Y_i$$

eigenspaces of
$$Y_{(i)} = Y_1 + ... + Y_i$$

Hodge norm is omnipresent in string compactifications:

$$\|\alpha\|^2 = \int_{\mathrm{CY}_n} \alpha \wedge \star \alpha \qquad \alpha \in H^n(Y_n, \mathbb{Q})$$

Hodge norm is omnipresent in string compactifications:

$$\|\alpha\|^2 = \int_{\mathrm{CY}_n} \alpha \wedge \star \alpha \qquad \alpha \in H^n(Y_n, \mathbb{Q})$$

For example:

Type IIB / Y₃ : - $\|\alpha\|^2$ determines gauge coupling of R-R gauge field $C_4 = A \wedge \alpha$

Hodge norm is omnipresent in string compactifications:

$$\|\alpha\|^2 = \int_{\mathrm{CY}_n} \alpha \wedge \star \alpha \qquad \alpha \in H^n(Y_n, \mathbb{Q})$$

For example:

Type IIB / Y₃ : -
$$\|\alpha\|^2$$
 determines gauge coupling of R-R gauge field $C_4 = A \wedge \alpha$

Type IIA / Y₃ : -
$$\|\alpha\|^2$$
 determines the decay constant of R-R axion field $C_3 = \phi \, \alpha$

Hodge norm is omnipresent in string compactifications:

$$\|\alpha\|^2 = \int_{\mathrm{CY}_n} \alpha \wedge \star \alpha \qquad \alpha \in H^n(Y_n, \mathbb{Q})$$

For example:

Type IIB / Y₃ : - $\|\alpha\|^2$ determines gauge coupling of R-R gauge field $C_4 = A \wedge \alpha$

Type IIA / Y₃ : - $\|\alpha\|^2$ determines the decay constant of R-R axion field $C_3 = \phi \, \alpha$

F-theory / Y_4 : - $\|\alpha\|^2$ determine scalar potential for a background flux $\alpha = G_4$ on Y_4

Hodge norm is omnipresent in string compactifications:

$$\|\alpha\|^2 = \int_{\mathrm{CY}_n} \alpha \wedge \star \alpha \qquad \alpha \in H^n(Y_n, \mathbb{Q})$$

For example:

Type IIB / Y₃ : -
$$\|\alpha\|^2$$
 determines gauge coupling of R-R gauge field $C_4 = A \wedge \alpha$

Type IIA / $Y_3: -\|\alpha\|^2$ determines the decay constant of R-R axion field $C_3=\phi\,\alpha$

F-theory /
$$Y_4$$
 : - $\|\alpha\|^2$ determine scalar potential for a background flux $\alpha=G_4$ on Y_4 dSC background flux $\alpha=G_4$ on Y_4

- Hodge norm in asymptotic region: $t^i = x^i + iy^i \rightarrow i\infty$

- Hodge norm in asymptotic region: $t^i = x^i + iy^i \rightarrow i\infty$

- Hodge norm in asymptotic region: $t^i = x^i + iy^i \rightarrow i\infty$

Asymptotic of the Hodge norm

Hodge norm in asymptotic region:

$$\|\alpha\|^2 \sim \sum_{l_1,...,l_n} (y^1)^{l_1-n} (y^2)^{l_2-l_1} ... (y^n)^{l_{n-1}-l_n} \|\rho_{l_1...l_n}\|_{\infty}$$

Can split

$$H^n(Y_n, \mathbb{Q}) = V_{\text{light}} \oplus V_{\text{heavy}} \oplus V_{\text{rest}}$$

$$\|\alpha\|^2 \to 0 \qquad \|\alpha\|^2 \to \infty$$

restriction of $e^{-x^i N_i} \alpha$ to subspaces $V_{l_1...l_n}$

Asymptotic of the Hodge norm

Hodge norm in asymptotic region:

$$\|\alpha\|^2 \sim \sum_{l_1,...,l_n} (y^1)^{l_1-n} (y^2)^{l_2-l_1} ... (y^n)^{l_{n-1}-l_n} \|\rho_{l_1...l_n}\|_{\infty}$$

Upshot:

In the asymptotic regime the dependents on y^i (saxions) and x^i (axions) is explicit \Rightarrow classification requires to classify all asymptotic limits

restriction of $e^{-x^i N_i} \alpha$ to subspaces $V_{l_1...l_n}$ related expression:

[Herraez, Ibanez, Marchesano, Zoccarato]

Classification of asymptotic limits

K3 surface:

Types: I, II, III

[Kulikov]

Calabi-Yau threefolds: 4 h^{2,1} types of limits

Types: I_a , II_b , III_c , IV_d

[Kerr,Pearlstein,Robles 2017] [Green,Griffiths,Robles]...

- Calabi-Yau fourfolds: $8 h^{3,1}$ types of limits

[TG,Li,Zimmermann] [TG,Li,Valenzuela]

Types: $I_{a,a'}$, $II_{b,b'}$, $III_{c,c'}$, $IV_{d,d'}$, $V_{e,e'}$

Classification of singularity enhancements

multi-dimensional moduli spaces:

Classification of singularity enhancements

multi-dimensional moduli spaces:

Classification of singularity enhancements

multi-dimensional moduli spaces:

What enhancements are allowed?

- Enhancement rules can be systematically determined:
- K3, CY₃ [Kerr, Pearlstein, Robles]
- CY₄ [TG,Li,Valenzuela], [TG,Li,Zimmermann]

 $II_2 \rightarrow IV_2$ not possible

$$I_0 \rightarrow III_0$$

$$I_0 \rightarrow III_0 \rightarrow IV_2$$

$$I_0 \rightarrow III_0 \rightarrow IV_2 \rightarrow IV_3$$

$$I_0 \rightarrow III_0 \rightarrow IV_2 \rightarrow IV_3 \implies sl(2)^3$$
 - algebra

⇒ each enhancement chain has its associated sl(2)-algebra and highest weight states relevant in the limit \rightarrow can be computed from \mathbf{a}_0 , \mathbf{N}_i

Limits in Moduli Space

Limits in Moduli Space

Monodromies in Kähler moduli spaces (CY₃):

$$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \mathbf{a}_{0} = \begin{pmatrix} 1 \\ 0 \\ -c_{2I} \\ \frac{i\zeta(3)\chi}{8\pi^{3}} \end{pmatrix}$$

$$\mathbf{a}_0 = \begin{pmatrix} 1 \\ 0 \\ -c_{2I} \\ \frac{i\zeta(3)\chi}{8\pi^3} \end{pmatrix}$$

Monodromies in Kähler moduli spaces (CY₃):

$$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \mathbf{a}_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 & 0 \end{pmatrix}$$

$$\mathbf{a}_0 = \begin{pmatrix} 1 \\ 0 \\ -c_{2I} \\ \frac{i\zeta(3)\chi}{8\pi^3} \end{pmatrix}$$

Arising singularities: II_b, III_c, IV_d and enhancements among them \Rightarrow distinguished by: rank(N), rank(N²), rank(N³) see also [Bloch, Kerr, Vanhove]

Monodromies in Kähler moduli spaces (CY₃):

$$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \mathbf{a}_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 & 0 \end{pmatrix}$$

$$\mathbf{a}_0 = \begin{pmatrix} 1 \\ 0 \\ -c_{2I} \\ \frac{i\zeta(3)\chi}{8\pi^3} \end{pmatrix}$$

Arising singularities: II_b, III_c, IV_d and enhancements among them \Rightarrow distinguished by: rank(N), rank(N²), rank(N³) see also [Bloch, Kerr, Vanhove]

Enhancement rules allow to rule out non-consistent intersection numbers (\rightarrow example from the intro is forbidden, would be $II_2 \rightarrow IV_2$) MSc thesis S.Bruning

Monodromies in Kähler moduli spaces (CY₃):

$$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \mathbf{a}_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 & 0 \end{pmatrix}$$

$$\mathbf{a}_0 = \begin{pmatrix} 1 \\ 0 \\ -\frac{c_2 I}{i\zeta(3)\chi} \\ \frac{i\zeta(3)\chi}{8\pi^3} \end{pmatrix}$$

Arising singularities: IIb, IIIc, IVd and enhancements among them \Rightarrow distinguished by: rank(N), rank(N²), rank(N³) see also [Bloch, Kerr, Vanhove]

- Enhancement rules allow to rule out non-consistent intersection numbers (\rightarrow example from the intro is forbidden, would be $II_2 \rightarrow IV_2$) MSc thesis S.Bruning
- Can do much more! 'massless states', other limits in moduli space ⇒ Talk of Pierre Corvilain

Application to Swampland Conjectures

Swampland Distance conjecture

Condition for limit to be at infinite distance:

[Wang]

exists
$$N_i$$
: $N_i \mathbf{a}_0 \neq 0$

Swampland Distance conjecture

Condition for limit to be at infinite distance:

[Wang]

exists
$$N_i$$
: $N_i \mathbf{a}_0 \neq 0$

Candidate states to consider: BPS - D3 branes wrapping three-cycles [GPV]

$$Q_3$$
 - charge

mass:
$$M^2 \le ||Q_3||^2$$

$$||Q_3||^2 \to 0$$

 $||Q_3||^2 \to 0$ path-independently \Rightarrow located in V_{light}

Swampland Distance conjecture

Condition for limit to be at infinite distance:

[Wang]

exists
$$N_i$$
: $N_i \mathbf{a}_0 \neq 0$

Candidate states to consider: BPS - D3 branes wrapping three-cycles [GPV]

$$Q_3$$
 - charge

mass:
$$M^2 \le ||Q_3||^2$$

$$||Q_3||^2 \to 0$$

path-independently \Rightarrow located in V_{light}

- Idea: start with a single BPS state $q_0 \in V_{ ext{light}}$ (constructed using sl(2)) [GLP]

$$Q_3(m_1, ..., m_n) = e^{m^i N_i} q_0$$

infinite orbit of charges

[TG,van de Heisteeg]

stable BPS states? → talk of Markus Dierigl

Reasons for being anti de Sitter

→ Irene's talk

- Consider F-theory with G_4 -flux:

$$V_{\rm M} = \frac{1}{\mathcal{V}_4^3} \left(\int_{Y_4} G_4 \wedge *G_4 - \int_{Y_4} G_4 \wedge G_4 \right)$$

Can be considered in all asymptotic regions of moduli space ⇒ asymptotic flux compactifications

Reasons for being anti de Sitter

→ Irene's talk

- Consider F-theory with G_4 -flux:

$$V_{\rm M} = \frac{1}{\mathcal{V}_4^3} \left(\int_{Y_4} G_4 \wedge *G_4 \right) - \int_{Y_4} G_4 \wedge G_4 \right)$$

Can be considered in all asymptotic regions of moduli space ⇒ asymptotic flux compactifications

• Example: 2 moduli $\operatorname{Im} t^1 = \tau$, $\operatorname{Im} t^2 = \rho$: $\operatorname{II}_{0,\hat{m}-2} \to \operatorname{V}_{2,\hat{m}}$ (out of 46)

$$||G_4||^2 \propto \frac{1}{\tau^3} \left[\frac{c_1}{\rho^3 \tau} + \frac{c_2}{\rho \tau} + \frac{c_3 \rho}{\tau} + \frac{c_4 \rho^3}{\tau} + \frac{c_5 \tau}{\rho^3} + \frac{c_6 \tau}{\rho} + c_7 \rho \tau + c_8 \rho^3 \tau \right]$$

Reasons for being anti de Sitter

→ Irene's talk

- Consider F-theory with G_4 -flux:

$$V_{\rm M} = \frac{1}{\mathcal{V}_4^3} \left(\int_{Y_4} G_4 \wedge *G_4 - \int_{Y_4} G_4 \wedge G_4 \right)$$

Can be considered in all asymptotic regions of moduli space ⇒ asymptotic flux compactifications

Example: 2 moduli $\operatorname{Im} t^1 = \tau$, $\operatorname{Im} t^2 = \rho$: $\operatorname{II}_{0,\hat{m}-2} \to \operatorname{V}_{2,\hat{m}}$ (out of 46)

$$||G_4||^2 \propto \frac{1}{\tau^3} \left[\frac{c_1}{\rho^3 \tau} + \frac{c_2}{\rho \tau} + \frac{c_3 \rho}{\tau} + \frac{c_4 \rho^3}{\tau} + \frac{c_5 \tau}{\rho^3} + \frac{c_6 \tau}{\rho} + c_7 \rho \tau + c_8 \rho^3 \tau \right]$$

- ⇒ exactly as in Type IIA flux compactifications
- ⇒ de Sitter no-go! [Hertzberg etal] What about the other 45 cases?

Axion Weak Gravity Conjecture

- Connect (axion) Weak Gravity Conjecture with Distance conjecture
 [TG,Palti,Valenzuela] [Lee,Lerche,Weigand] [Font,Herraez,Ibanez] [Marchesano,Wiesner]
- Type IIA R-R axions from $\,C_3 = \phi \alpha$
 - decay constants $f \propto \|\alpha\|$ grow parametrically for $\alpha \in V_{\text{heavy}}$ [TG,van de Heisteeg]
- ► Can we find a D2-instanton with decreasing action S_{inst} s.t. $S_{\text{inst}}f \leq qM_p$?
 - use distance conjecture to argue for instantons on $\, \alpha \in V_{ ext{light}} \,$
- $V_{
 m heavy}$ and $V_{
 m light}$ are dual spaces

Conclusions

- Motivated by the Swampland Conjectures we uncovered a universal structure emerging in the asymptotic regimes of geometric moduli spaces
 - \Rightarrow limits characterized by sl(2)ⁿ and its representations
 - ⇒ asymptotic of Hodge norm
 - ⇒ attainable for a classification

limiting mixed Hodge structures

- New general evidence for the Conjectures at the limits of moduli space
- New way to study the Kähler moduli sector: structure behind intersection numbers, Chern classes determining type of Calabi-Yau
- Numerous further questions
 - control over numerical behavior: important in conjectures
 - going beyond geometry: what else is there in the landscape?

Thank you for your attention!