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Current ML applications  
in high energy
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Improve sensitivity
• Widely used in LHC particle identification, data analysis: 

 
 
 
 
 
 
 

• We can use this for improved bounds on axion-like 
particles compared to previous bounds in (1704.05256)…
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Searching for supersymmetry with ML techniques

 63David Handl | string_data Workshop | 27th March 2018 

• After likelihood fit no 

significant excesses are 

observed compared to SM 

expectation 

• Exclusion limits are derived for 

model of top squark pair 

production 

• Large improvement of the 

expected limit using BDT 

compared to the previous 

analysis

arxiv:1711.11520

Atlas: 1711.11520

WIP with Francesca Day
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Other avenues?
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– Gary Shiu

“Don’t ask what ML can do for you, 
ask what you can do for ML.” 
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What are the coolest, most powerful 
methods we have in string theory?
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Dualities

Betzler, SK: 190x.xxxxx
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Dualities
• Multiple EFTs with different DOF describing the same 

system.


• Dynamical systems: condensed matter physics, AdS/CFT, 
string dualities 


• Allow us to describe dynamics of strongly coupled systems 
via dual weakly coupled descriptions


• Allow us to get EFT-operators at higher accuracy than 
normally allowed (theory: large number of diagrams, 
experiment: large amount of data). Think about Yukawa 
couplings in heterotic standard embedding


• …
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Dualities
• Multiple EFTs with different DOF describing the same 

system.


• Dynamical systems: condensed matter physics, AdS/CFT, 
string dualities 


• Allow us to describe dynamics of strongly coupled systems 
via dual weakly coupled descriptions


• Allow us to get EFT-operators at higher accuracy than 
normally allowed (theory: large number of diagrams, 
experiment: large amount of data). Think about Yukawa 
couplings in heterotic standard embedding


• … What’s your favourite application?
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How are dualities useful in 
practice?
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Dualities
• What’s the use of these multiple EFT descriptions?

• Different EFTs describe different properties (correlators) more 

efficiently, i.e. determined by `leading order’ behaviour in one 
set of fields and complicated functions in dual set of fields.


• Understand the EFT in one frame better (i.e. higher order 
corrections) due to constraints from dual description.


• Good news: plenty of well-studied examples to adapt/
develop ML techniques: AdS/CFT (𝛈/s), 2D Ising model, 
Yukawa couplings in heterotic standard embedding (complex 
structure moduli metric)… 
Many open questions on how higher order EFT operators in 
string theory look like.
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Why interesting for ML?
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Why interesting for ML?
• (Deep) Neural networks can transform data into different representation.

• Finding good data representations is hard and often out of the realm of 

current optimisation strategies (see DFT below).

• Different EFTs describe different properties (correlators) more `efficiently’. 

Such representations are relevant!

• It allows us to determine a property of the data more easily.

• Example: Discrete Fourier Transformation 

 
 
 
 
 
 
 

pk =
n

∑
j=1

xj e−2πijk/nxk =
1
n

n

∑
j=1

pj e2πijk/n
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Fourier transformation
• Let’s confront this with a data question: Is there a signal in 

the noise? 
 
 
 
 
 
 
 

• Let’s check the performance on simple networks
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DFT: simple network
• Supervised learning task (binary classification): 

 
 

• Network 
 
 
 
 
 

{((xR, xI), y)} {((pR, pI), y)}
N discrete values

y = 0y = 1 noise + signal noise

Layer Shape Parameters
Conv1D (2000,2) 4

Activation (2000,2) -
Dense 1 4001

Activation 1 -

For this network 
classification works in 
momentum space, 
but not in position space.
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Utilising dual representation
• Goal: improve performance on position space.


• Deeper network? Can do the job in principle 
[DFT can be implemented with a single dense layer]


• However finding it dynamically is `impossible’ with standard 
optimisers, initialisations, and regularisers. 
 
 
 
 
 

Layer Shape Parameters
Dense (2000,2) 16000000

Conv1D (2000,2) 4
Activation (2000,2) -

Dense 1 4001
Activation 1 -

DFT Random 
starting point
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DFT from modified loss
• Adapt loss function to achieve feature separation, i.e. separating 

the two classes of data (inspired by triplet loss) 
[towards generating dual representations dynamically] 
 
 
 
 
 
 

• Note: different data question (signal injected in position and 
momentum space) can lead to multiple minima in the loss 
landscape, i.e. using momentum space and position space.
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1503.03832

Loss = |ynoise |2 − |ysignal |
2 + α

Loss = max {0, β − ∑ |w |2 }
DFT

Assist  finding DFT 
with modified loss

Separation

Decorrelation via weight regularisation

+∑
i≠j

max{0,(wi ⋅ wj)}
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DFT from feature separation
• The final result is a simple network with few parameters 

utilising `dual’ representation.

Fourier

Network Rep.

Input sample:
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“Therefore we can see that the dualities we have been dealing with for 
antisymmetric tensors are only particular cases of Fourier transforms and 
finding the dual action reduces to finding Fourier transforms. “

Dualities and Fourier transformation

• Review on dualities and global symmetries (Quevedo: hep-
th/9706210), several dualities can be seen as Fourier 
transformation: 
 
 

• For instance duality between massive antisymmetric 
tensors. 
 
 
 

S = ∫ dDx (F(∂Hh) + G(Hh)) S̃ = ∫ dDx (F̃(B̃d−h) + G̃(∂B̃d−h))

Z = ∫ 𝒟B̃d−h𝒟Hh e ∫ dDx(H⋅dB̃d−h+G(Hh)+F̃(B̃d−h))

B̃d−h Hh

eF̃ ↔ eF
FT
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Dualities and Fourier transformation

“Therefore we can see that the dualities we have been dealing with for 
antisymmetric tensors are only particular cases of Fourier transforms and 
finding the dual action reduces to finding Fourier transforms. “

• Fourier transformation ~ Duality transformation 
 
 

• Here: network adapts dual representation by demanding 
feature separation.


• Can we use this? 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Let’s look for Physics examples 
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2D Ising Model
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DualOriginal

Duality in 2D Ising model
• High - low temperature self-duality

H = − J∑
⟨i, j⟩

sisj

Z = ∑ e−βH(s)

β̃ = −
1
2

log tanh ββ =
1

kBT

H = − J∑
⟨i, j⟩

σiσj

Z = ∑ e−β̃H(σ)

Tcritical

Ordered rep. ↔ Disordered rep.

Krammers, Wannier 1941; Onsager 1943; review: Savit 1980!22



DualOriginal

Duality in 2D Ising model
• High - low temperature self-duality

H = − J∑
⟨i, j⟩

sisj

Z = ∑ e−βH(s)

β̃ = −
1
2

log tanh ββ =
1

kBT

H = − J∑
⟨i, j⟩

σiσj

Z = ∑ e−β̃H(σ)

Tcritical

Ordered rep. ↔ Disordered rep.

Position space? Momentum space?

Krammers, Wannier 1941; Onsager 1943; review: Savit 1980!22



Which data problem?
• Some correlation function which is easier evaluated on 

dual variables. 

• Can we classify the temperature for low-temperature 
configurations? Which temperature is a sample drawn 
from (at low temperatures)?

⟨σiσj⟩, ⟨E(σ)⟩, ⟨M(σ)⟩

They look rather similar. How 
about in the dual rep.?

!23



Duality

Data question on Ising
• But at the dual temperatures, our data takes a different 

shape: 
 
 
 
 
 
 

• It is easier to classify temperature of a low-temperature 
configuration in the dual representation …


• How come? P(s) =
eE/T

Z
, P(σ) =

eẼ/T̃

Z
ΔT ≪ ΔT̃⟨ΔE⟩ ≪ ⟨ΔẼ⟩
!24



Ising: simple network
• Let’s confirm this at simple networks:

Original data: <83% val. acc. 

Dual data: ~96% val. acc.

Side remark: way outperforming standard sklearn classifiers

Original Dual

T=1.25 
T=1.00
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How do we utilise this data 
representation? 

Need duality transformation

!26



Ising: finding duality 
transformation

• In analogy to DFT, we want to go to dual representation. 
 
 

• Which strategy?


• First route: Forcing feature separation by adding similar 
loss as before.


• Second route: KL-divergence (or categorical-
crossentropy) between NN distribution and dual 
temperature distribution; based on pEi (sparse samples)

Input: 
s-configuration

NN dual: 
𝜎-configuration

Simple 
 

network
Classification
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Feature separation in Ising
• Which neural network architecture? Several architectures, 

so far most promising: U-Net (1505.04597)

s-configuration σ-configuration

MaxPooling

Conv.

UpSampling

UNet
Pix2Pix
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Matching pEi-distributions
• A “more sophisticated anchor” point… 

 

• Network should transform from input to output 
distributions

DKL(P(E( f(si, β))) | |P(E(σi, β))) = ∑
j

P(Ej( f(si, β))log (
P(Ej( f(si, β)))

P(Ej(σi, β̃)) )

Input Distributions Dual Temperature distributions
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Matching pEi-distributions
• A “more sophisticated anchor” point…


• Currently, we obtain the following dual distributions: 
 

DKL(P(E( f(si, β))) | |P(E(σi, β))) = ∑
j

P(Ej( f(si, β))log (
P(Ej( f(si, β)))

P(Ej(σi, β̃)) )

Dual Temperature distributions Output distributions from network

!30

T=1.45 
T=1.95

Preliminary, wait for publication



Further Dualities 
Connection to String Phenomenology
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Stringpheno ↔ ML-Dualities
• Just some comments/thoughts:

• We need to improve on obtaining/recovering dualities: 

stringpheno perfect playground to obtain dualities and 
put dualities to use in data questions (couplings, higher 
order EFT operators)


• String landscape constrained by dualities, does this apply 
to neural networks as well?

Model Parameters

Cost 
Function

Model 1 Model 2
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Conclusions
• Dualities tightly connected to data representations.


• Finding good data representations is at the heart of ML and 
often no interpretation is available.


• Favoured representation from asking data question 
(DFT, Ising)


• Dualities can emerge and identified from `feature separation’


• By using dualities/dual representations we can build more 
efficient networks (DFT, 2D Ising)


• Dualities in Physics motivate multiple minima in a different 
landscape, those of the cost functions of neural networks.
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Thank you …
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