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Current ML applications
In high energy



Improve sensitivity

e Widely used in LHC particle identification, data analysis:
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e \We can use this for improved bounds on axion-like
particles compared to previous bounds in (1704.05256)...

WIP with Francesca Day



Other avenues?



“Don’t ask what ML can do for you,
ask what you can do for ML.”

— Gary Shiu



What are the coolest, most powerful
methods we have in string theory?



Dualities

Betzler, SK: 190x.xxxxx



Dualities

Multiple EFTs with different DOF describing the same
system.

Dynamical systems: condensed matter physics, AdS/CFT,
string dualities

Allow us to describe dynamics of strongly coupled systems
via dual weakly coupled descriptions

Allow us to get EFT-operators at higher accuracy than
normally allowed (theory: large number of diagrams,
experiment: large amount of data). Think about Yukawa
couplings in heterotic standard embedding
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How are dualities useful In
practice?



Dualities

What'’s the use of these multiple EFT descriptions?

Different EFTs describe different properties (correlators) more
efficiently, i.e. determined by ‘leading order’ behaviour in one
set of fields and complicated functions in dual set of fields.

Understand the EFT in one frame better (i.e. higher order
corrections) due to constraints from dual description.

Good news: plenty of well-studied examples to adapt/
develop ML techniques: AdS/CFT (n/s), 2D Ising model,

Yukawa couplings in heterotic standard embedding (complex
structure moduli metric)...

Many open questions on how higher order EFT operators in
string theory look like.

10



Why interesting for ML?



Why interesting for ML?

(Deep) Neural networks can transform data into different representation.

Finding good data representations is hard and often out of the realm of
current optimisation strategies (see DFT below).

Different EFTs describe different properties (correlators) more "efficiently’.
Such representations are relevant!

It allows us to determine a property of the data more easily.
Example: Discrete Fourier Transformation
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Fourier transformation

e |et’s confront this with a data question: Is there a signal in

the noise?

Position space: real part (signal)

Position space: imaginary part (signal)
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e | et’s check the performance on simple networks
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DFT: simple network

e Supervised learning task (binary classification):
N discrete values

{((Xg> X)), V) } {((Pr- P>}

y =0 noise

y=1 noise + signal

* Network
# ——— ————— — ————— —— — —— — — —— — — — — — —— —— — — — —— —— — — —— —— ——— ——
# Define simple l-layer-CNN.
# — ——————— —— —— — — — — — —— —— —— — — — — — —— —— — — — —— —— — — —— — —— — — ——

For this network
model = Sequential() classification works in
model.add(ConvlD(2, kernel size=2,

- momentum space,

activation='relu',

input_shape=(2*number_bins,1))) but not in position space.
model.add(Flatten())
model.add(Dense(1l, activation='sigmoid'))
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Utilising dual representation

e Goal: improve performance on position space.

e Deeper network? Can do the job in principle
[DFT can be implemented with a single dense layer]

e However finding it dynamically is impossible’ with standard
optimisers, initialisations, and regularisers.

Layer Shape Parameters

Dense (2000,2) 16000000

ConviD (2000,2) 4
Activation  (2000,2) -
Dense 1 4001

Activation 1 -
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DFT from modified loss

e Adapt loss function to achieve feature separation, i.e. separating
the two classes of data (inspired by triplet loss) 1503.03832
[towards generating dual representations dynamically]

Separation

2 2 Assist finding DFT
Loss = |ynoise| o |ysigna1| Ta )

with modified loss
Decorrelation via weight regularisation

Loss=max{0,ﬁ—2|w|2}

+ )" max{0,(w; - )}
i
e Note: different data question (signal injected in position and
momentum space) can lead to multiple minima in the loss

landscape, i.e. using momentum space and position space.
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DFT from feature separation

e The final result is a simple network with few parameters
utilising dual’ representation.

ourmodel=Sequential ()

ourmodel.add(Dense(2,use bias='False',activity regularizer=customReg,
linput_shape=(int(2*bins),)))

def customLoss(yTrue,yPred):
margin = K.constant(1l.)

return K.maximum(K.constant(0),margin-K.sum(K.square(yPred)))

def customReg(weight matrix):
margin = K.constant(0.5)

return K.maximum(K.constant(0.),margin-K.sum(K.square(weight matrix))) al
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Dualities and Fourier transformation

e Review on dualities and global symmetries (Quevedo: hep-
th/9706210), several dualities can be seen as Fourier

transformation:

“Therefore we can see that the dualities we have been dealing with for
antisymmetric tensors are only particular cases of Fourier transforms and
finding the dual action reduces to finding Fourier transforms. *

* For instance duality between massive antisymmetric

tensors. } o .
7 = J@Bd—thh e |4 x(H-dB,_;+G(H))+F(B,_p)) 7 FT P

EV w‘

S = Jde (F(oH,) + G(H,)) § = Jde (FByp) + G(0B,_p)
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Dualities and Fourier transformation

* Fourier transformation ~ Duality transformation

“Therefore we can see that the dualities we have been dealing with for
antisymmetric tensors are only particular cases of Fourier transforms and
finding the dual action reduces to finding Fourier transforms.

 Here: network adapts dual representation by demanding
feature separation.

e Can we use this?
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Let’s look for Physics examples

20



2D Ising Model



Duality in 2D Ising model

e High - low temperature self-duality
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Krammers, Wannier 1941; Onsager 1943; review: Savit 1980



Duality in 2D Ising model

e High - low temperature self-duality

" K Original w K Dual x
12 - H=_sti5j H=—J20'i0'j

- Teritical i (i,j)

7= N oPHE) Z=) MO

— f=——1 h
\_ = || gt

00 25 50 75 100 125 150

T

Tdual

[ =] N s o [
'S 'S 'S A

Ordered rep. < Disordered rep.
e R

Krammers, Wannier 1941; Onsager 1943; review: Savit 1980




Which data problem?

¢ Some correlation function which is easier evaluated on
dual variables.

(0,0}, (E(0)), (M(0))

e Can we classify the temperature for low-temperature
configurations? Which temperature is a sample drawn
from (at low temperatures)?

Original Variables

1600 1 * | T= 0p50
¢ T= 0p75
T= 1p00

- 1050 They look rather similar. How
about in the dual rep.?
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Data question on Ising

 But at the dual temperatures, our data takes a different
shape:

Original Variables Dual Variables
1600 {1 * T= 0p50
T=0p75
T= 1p00
1590 -
T=1p25
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S 1580 1
¥
o
& 1570 -
5
=
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25 -
1550 0 1
-1600 -1580 -1560 -1540 -1520 -600 =500 -400 -300 -200 -100 0

Energy Energy

* |t is easier to classify temperature of a low-temperature
configuration in the dual representation ...

EIT EIT
* How come? P(s) = £ , P(0) = € 3.
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(AE) < (AE) AT < AT i —
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Ising: simple network

e |et’s confirm this at simple networks:

model = Sequential()

model .add(Conv2D (4, kernel_size=3J
activation='relu' . .
e (O, (P )] Original data: <83% val. acc.

model.add(Flatten())

model.add(Dense(1l, activation='sigmoid')) Dual data: ~96% val. acc

opt = Nadam(lr=0.002)

model.compile(loss=binary crossentropy,
optimizer=opt, metrics=[ 'accuracy'])

3000
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5000 Original 25001

000 2000 -
‘;’ 3000 T=1.25 %’ 1500
- 2000 T=1.00 " 1000

1000 - 300 1

-500 -450 -400 -350 -300 -250 -200 -150 -100
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Energy

Energy

Side remark: way29utperforming standard sklearn classifiers



How do we utilise this data
representation?

Need duality transformation
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Ising: finding duality
transformation

e |In analogy to DFT, we want to go to dual representation.

Input: dual: Slmple
s-configuration _> o-configuration s o

network

Classification

e Which strategy?

e First route: Forcing feature separation by adding similar
loss as before.

e Second route: KL-divergence (or categorical-
crossentropy) between NN distribution and dual
temperature distribution; based on pe; (sparse samples)
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Feature separation in Ising

e \Which neural network architecture? Several architectures,
so far most promising: U-Net (1505.04597)

Conv.
s-configuration | | | | | | o-configuration
| | | /JpSampling

MaxPoolin

P|x2P|x

\
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Matching pei-distributions

A “more sophisticated anchor” point...

P(E(f(s;» ) >

Dy (PEf(s. /) || PEG. ) = Y PE (s B0 ~
ke ’ Z]: e g< P(E(0s )

Network should transform from input to output
distributions
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Matching pei-distributions

e A “more sophisticated anchor” point...

P(E(f(s;» ) >

Dy, (P(E . P(E(o,, = P(E. ) —
k. (PE(f(s:, )| | P(E(a;, B))) ; (E(f(s, ) og( P D)

e Currently, we obtain the following dual distributions:
Dual Temperature distributions Output distributions from network

0.10 -

0.08 -

0.06 -

Pe

0.04 - Preliminary, wait for publication

0.02 -

0.00

-0.02

30



Further Dualities
Connection to String Phenomenology
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Stringpheno « ML-Dualities

e Just some comments/thoughts:

e \We need to improve on obtaining/recovering dualities:
stringpheno perfect playground to obtain dualities and
put dualities to use in data questions (couplings, higher
order EFT operators)

e String landscape constrained by dualities, does this apply
to neural networks as well?

A

Cost
Function

Model 2
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Conclusions

Dualities tightly connected to data representations.

Finding good data representations is at the heart of ML and
often no interpretation is available.

Favoured representation from asking data question
(DFT, Ising)

J

Dualities can emerge and identified from feature separation

By using dualities/dual representations we can build more
efficient networks (DFT, 2D Ising)

Dualities in Physics motivate multiple minima in a different
landscape, those of the cost functions of neural networks.
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Dual Vanables
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