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Strings and Moduli
• String theory predicts (6 or 7) extra dimensions

• Major problem: Fixing size and shape of extra dimensions (moduli)

• Progress to fix all moduli: only this century (GKP, KKLT, LVS,...)

• In some cases the 4D space = de Sitter space (ᴧ>0)



Moduli Stabilisation in IIB

• Moduli S, Ti, Ua

• Quantum corrections
• Three options: 

In IIB string theory flux compactifications [125, 126] naturally fix the value of all the

complex structure moduli Ua and the dilaton S and reduce the number of vacua from a con-

tinuum to a discrete but large set of points determined by the quantised three-form fluxes.

In both DRS (Dasgupta, Rajesh, Sethi) ([125]) and GKP (Giddings, Kachru, Polchinski)

[126] we have flux stabilisation of the complex structure moduli and the dilaton of a con-

struction involving a Calabi-Yau orientifold X with internal G3 fluxes. While in both cases

the (static) solution requires that the fluxes are ISD (imaginary self-dual i.e. ⇤6G3 = iG3)

which is compatible with the Hodge decomposition G3 2 (2, 1)� (0, 3). Supersymmetry is

preserved only if there is no (0, 3) component as considered in DRS.

Kähler moduli Ti are not stabilised by the fluxes nor any perturbative e↵ect. The

reason behind this is the fact that there exists a Peccei-Quinn synmetry Ti ! Ti+ ici with

constant cis that together with the holomorphicity of the superpotential forbids any Ti

dependence of W to all orders in perturbation theory. However these moduli are the gauge

couplings for matter fields localised in D7 branes and therefore standard non-perturbative

e↵ects generate a superpotential for these fields. The total superpotential for closed string

moduli is

W = Wflux(S,U) +Wnp(S,U, T ). (2.4)

The source of non-perturbative e↵ects are Euclidean brane instantons and non-perturbative

dynamics in the field theory of D7 or D3 branes such as the condensation of gauginos in the

gauge sector of the D brane. In the past decade there has been substantial progress in the

understanding and computational control of Euclidean D brane instantons [127]. Gaugino

condensation, being a dynamical e↵ect, has been well understood from the standard 4d

e↵ective field theory (EFT) but it is more di�cult to study from the full 10d e↵ective

action and the full string theory.
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K
⇣
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The starting point of the 4D EFT is the F-term 4d supergravity scalar potential for arbi-

trary superpotential W (�M ) and Kähler potential K(�M , �̄M̄ ) in units of Mp:

VF = e
K
⇣
K

�1
MN

DMWDMW � 3|W |
2
⌘

(2.6)

The tree-level Kähler potential for the Kähler moduli satisfies the celebrated no-scale prop-

erty K
�1
i|̄ KiK|̄ = 3 which is just a consequence of the homogeneity of V. Using this and

the fact that the flux superpotential does not depend on the Ti fields, it implies a positive

definite scalar potential for S and U and stabilises them supersymmetrically by solving

DUaW = DSW = 0. As long as these equations have solutions for di↵erent values of the

quantised fluxes they will generate the huge number of solutions that define the string land-

scape but at this stage the Kähler moduli Ti have a completely flat potential that vanishes

for all values of the fields even for those that break supersymmetry DTW ⇠ KTW0 6= 0.

Two main scenarios have emerged to fix the Kähler moduli: the original KKLT [15]

and the Large Volume [36, 37] (LVS) scenarios. Both start from the flux superpotential,
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compute the structure of �V . It takes schematically the form [37]:

�V / W
2
0 �K +W0�W (2.11)

If there were only one single expansion parameter and if, as usual, W0 � �W and �K �

�W (since perturbative terms dominate over non-perturbative terms at weak couplings),

the first term would be the leading order term. It would lift the potential but would

give rise to a runaway behaviour, unless di↵erent order terms compete to give rise to a

minimum which would happen only if the perturbative expansion breaks down and the

corresponding expansion parameter is not small. This is the Dine-Seiberg problem [61].

Flux compactifications in IIB allow two ways to overcome this issue. First, in the KKLT

scenario the big discrete degeneracy of flux vacua is used in such a way that W0 is tuned

to W0 ⇠ �W = Wnp. This then requires �W
2 terms to be also included in the expansion

stabilising the Ti fields when they compete with the W0�W terms. Notice that in this limit

the first term in �V above is of order �W 3 and is then subdominant. Justifying neglecting

quantum corrections to the Kähler potential.

In LVS the fact that there are more than one expansion parameters plays the key role.

In this case the two terms in equation (2.10) can compete with each other to provide a

minimum as long as each comes from a di↵erent expansion. In this case �K ⇠ W0�W which

for �K ⇠ 1/V and �W ⇠ e
�a⌧ implies that the volume is exponentially large V ⇠ e

a⌧ . Here

⌧ is usually a blow-up mode that gets stabilised to values of order 1/gs which is large at

weak string coupling gs and therefore the volume is exponentially large.

In summary KKLT requires tuning of the fluxes for W0 ⌧ 1 whereas LVS works for

standard values of W0 ⇠ O(1 � 100) (as it is found in concrete examples [117, 131]) but

depends more on the perturbative corrections to K. Notice that from the e
K factor in the

general expression for V the order of V0 is V0 ⇠ M
4
p /V

2
⇠ M

4
s whereas in LVS the order

of �V is �V ⇠ W
2
0M

4
p /V

3
⇠ M

2
sm

2
3/2 ⌧ M

4
s . Having V0 vanishing at the minimum and

�V ⌧ M
4
s supports the validity of using the EFT at scales below Ms.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [62–69]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on an orientifold of a Calabi-

Yau threefold X. This is a controlled procedure if the compactification volume V ⌘
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Fix T-moduli: LVS

No-scale

Fix S,U but T arbitrary
Landscape of vacua 
(Giddings, Kachru, Polchinski; Taylor, Vafa, Grana, 
Trivedi, Tripathy, Sethi, Douglas, Denef, Florea,... ) 

 

 

  
�  Fluxes stabilize the c.s. moduli 

�  no-scale structure 

�  Kaehler moduli stabilized after 

 including the non-pert. effects 

�  dS uplift (via anti-D3) (KKLT) 

Issue of control, flux tuning, many other .........  
IISER, Berhampur; 

21/06/2019 Pramod Shukla, ICTP Trieste 20 
*Warning: Runaway ≠
"#$%&'(('%)'!



de Sitter

• Anti D3 brane 

• D+F terms in EFT or T-branes

• Complex structure/Dilaton uplift (DUW≠ 0, DSW≠ 0)

• Non critical strings, negative curvature 
compactifications, Kahler uplift, nonperturbative 
effects on D3 branes, ...



Challenges to KKLT, LVS,...

• Antibranes, fluxes and non-perturbative effects?

• Tuning W0<<1? in KKLT (W0 =O(1)  in LVS)

• Higher order  corrections ?

• T-branes in a controlled region?

• More explicit compact CY (realistic) models of dS

• Populating the landscape (large # of U moduli + vacuum 
transitions)

See talks: McCallister, Hebecker, van Riet, 
Sethi, Grana, Blumenhagen, Tomasiello,…

See: Cicoli, de Alwis, Maharana, Muia, FQ   arXiv:1808.08967

http://arxiv.org/abs/arXiv:1808.08967


Swampland and Bootstrap
have been used to constrain the space of consistent effective field theories (for example see

[54]) and these ideas have also been used in connection with the swampland for gravitational

effective field theories [55, 56]

While we propose this as a conjecture, we want to use the effective LVS AdS theory

to provide motivational arguments for it. Let us re-state the form of the AdS interactions

between the two light scalar fields δΦ and a present in the effective field theory of LVS,

L(δΦ)n = (−1)n−1λn(n− 1)

(

−3
M2

P

R2
AdS

)

1

n!

(

δΦ

MP

)n(

1 +O
(

1

λ⟨Φ⟩

))

, (5.1)

L(δΦ)n−2aa =

(

−
√

8

3

)(n−2)
1

2(n− 2)!

(

δΦ

MP

)n−2

∂µa∂
µa, (5.2)

with λ =
√

27
2 (there are in addition the heavier modes whose dimensions diverge in the

V → ∞ limit).

If one takes the LVS solution seriously, then it defines a solution to quantum gravity

on AdS space with a low-energy spectrum and interactions that are, in the V → ∞ limit,

radiatively exact and entirely specified in terms of RAdS . Using the holographic logic of

AdS/CFT, this AdS solution determines CFT correlators via a Witten diagram expansion in

AdS (for pedagogical discussions, see [57, 58]). Assuming LVS to be correct, we then regard

the structure of Eq. (5.2) together with the dimensions ∆Φ and ∆a as defining a dual CFT,

CFTLV S (or at least the part of the dual CFT corresponding to the low-dimension operators).

Such CFTs are constrained by the consequence of unitarity and conformal symmetry.

Recent years have seen great progress in understanding the implications of these constraints,

in particular using the techniques of the conformal bootstrap. This has led to powerful

results on (for example) the value of the lowest lying allowed operator dimensions and, given

certain assumptions about which operators are relevant, the uniqueness of the 3d Ising model

[59]. One can view the set of CFT properties forbidden by the conformal bootstrap as

defining a CFT swampland. We therefore want to conjecture that these constraints are, under

AdS/CFT, equivalent — namely, that swampland constraints on consistent AdS theories of

quantum gravity can be reinterpreted as an inability of a dual field theory to satisfy both

unitarity and crossing symmetry.8

LVS Bootland Conjecture. Modifications to Eqs. (5.1) and (5.2) that place the resulting

AdS theory in the swampland are equivalent to modifications to the dual field theory that make

it unable to satisfy the CFT bootstrap constraints of unitarity and crossing symmetry.

We can see this as a special version of a more general conjecture,

AdS Bootland Conjecture. Swampland constraints on consistent AdS theories of quantum

gravity are equivalent to bootstrap constraints on consistency of the dual CFT.

8While this mainly refers to the low energy spectrum, one can similarly conjecture that the presence of the

tower of string and KK modes are, holographically, essential to satisfy generalised modular invariance of the

3d CFT.
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e.g. LVS/CFT Mode Spin Parity Conformal dimension

Tµν 2 + 3

a 0 - 3

Φ 0 + 8.038 = 3
2

(

1 +
√
19
)

Table 1. The low-lying single-trace operator dimensions for CFT duals of the Large Volume Scenario
in the limit V → ∞.

The asymptotic value is obtained in the limit of infinitely large volume, in which the mass

gap to other modes becomes arbitrarily large. Although in principle the size of the volume can

only take discrete values, as lnV ∝ 1
gs
, and gs is fixed by the (very large) choice of fluxes, in

practice it is reasonable to view the allowed values for V as a continuum attaining arbitrarily

large values. For example, with 10200 flux choices satisfying the tadpole constraint, gs can

be reasonably tuned to be as small as 10−100, allowing compactification volumes as large as

e10
100

.2

We can therefore regard LVS vacua as providing a series of vacua that approach the flat-

space limit of AdS. In this limit, the dimensions of low-lying primary single-trace operators in

the CFT are shown in table 1. Note that, while the lowest single-trace positive parity scalar

operator has conformal dimension 8.038, there are double-trace scalar modes with smaller

conformal dimensions - both TµνT µν and a2 will have conformal dimension 6.

2.1.3 Fibre Moduli

One interesting variation of the Large Volume Scenario is the case where there are many

‘large’ moduli. A simple example of this would be where the bulk space is a toroidal product,

T 2 × T 2 × T 2. More generally, this occurs for scenarios of fibred Calabi-Yaus [30, 31], for

example when the volume can be expressed as

V = α
(

τ1
√
τ2 − τ3/23

)

. (2.21)

In these models the overall volume direction is stabilised as in the normal Large Volume

Scenario, by an interplay of α′ and non-perturbative effects. This leaves the fibre direction (a

simultaneous variation in τ1 and τ2 that leaves the overall volume unchanged) unstabilised.

The fibre direction can be stabilised by perturbative D-brane loop corrections that break

the additional degeneracy. Such loop corrections [32–35] generate potential terms that are

parametrically smaller than the O(α′3) effects responsible for volume stabilisation, scaling

instead as

Vloop ∝
1

V10/3
,

2While volumes larger than 1030 (in units of l6s) would be grossly inconsistent with phenomenology as they

imply Ms < 1TeV, such constraints are irrelevant for the questions of principle relevant to this paper.
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All other  conformal dimensions O(V a)

J. Conlon, FQ 1811.06276

• SUSY at KK scale ? 
• Standard Model ?
• Quintessence?  

Further 
Conjectures?⎨

* LVS Satisfies strong and weak AdS distance conjectures (Palti)



Partly full Partly empty



String Cosmology
• Epochs: Pre-inflation, inflation, post-inflation (pre-BBN)

• Chiral spectrum implies N=0,1 in 4D (work with  N=1)

• Strings relevant in postinflation? (yes: moduli).

“Generically”: If EFT is supersymmetric then the
moduli survive at low energies until susy breaks:

massmoduli≈ mgravitino. 

(but interesting exceptions!)



Kahler moduli
• Overall volume

• Blow-up

• Fibre moduli

LV SV1 SV2

C0 5.8 · 10−8 0.012 0.023

C1 292.4 20629.4 39786.9

C2 73.1 5157.35 9946.73

Cup 219.3 1200.8 29840.2

R = C0/C2 8 · 10−10 2.3 · 10−6 2.3 · 10−6

Table 3: Coefficients of the inflationary potential for the various parameter sets

discussed in the text.

2 4 6 8 10 12 !
"

2·10-6

4·10-6

6·10-6

8·10-6

V

Figure 2: V (in arbitrary units) versus ϕ̂, with V and τ3 fixed at their minima. The plot assumes
the parameters used in the text (for which ϕ̂ip ≃ 0.80, ϕ̂end = 1.0, and R ≡ C0/C2 ∼ 10−6).

3.3 Inflationary slow roll

We next ask whether the scalar potential (3.31) can support a slow roll, working in the

most natural limit identified above, with A,C ≪ B and B > 0. As we have seen, this case

also implies 0 < C0 ≪ C1 = 4C2, leaving a potential well approximated by

V ≃ C2
⟨V⟩10/3

[

(3−R)− 4

(

1 +
1

6
R

)

e−κϕ̂/2 +

(

1 +
2

3
R

)

e−2κϕ̂ +R eκϕ̂
]

(3.33)

which uses Cup ≃ C1 − C0 − C2 and C1/C2 ≃ 4, and works to linear order in

R :=
C0
C2

= 2g4s

(
CKK
1 CKK

2

CW
12

)2

≪ 1 . (3.34)

The normalization of the potential may instead be traded for the mass of the inflaton field

at its minimum: m2
ϕ = V ′′(0) = 4

(

1 + 7
6 R
)

C2/⟨V⟩10/3.
In practice the powers of R can be neglected in all but the last term in the potential,

where it multiplies a positive exponential which must eventually become important for
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V~A-Be-√2/3α



Post Inflation



 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford
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Genericity assertions:

2. Moduli can cause cosmological problems:

Polonyi ‘81, Coughlan & Ross ’83, Banks, Kaplan, Nelson ‘93, de Carlos, Casas, Quevedo, Roulet ’93. 

Inflation

Modulus decay/reheating Present

�1 �1

�1�1

After inflation

Moduli and cosmology

Moduli Domination

 String Phenomenology 2014, Trieste.                                                   David Marsh, University of Oxford
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the lightest moduli start the Big Bang. 

m� & 3 · 104 GeV .

Moduli and cosmology

Coughlan et al 1983, Banks et al, de Carlos et al 1993



Oscillons* from String Moduli
Antusch, Cefalá, Krippendorf, Muia, Orani, FQ
arXiv:1708.08922

*localised, long-lived, non-linear excitations of the scalar fields. 

http://arXiv.org/abs/arXiv:1708.08922


Generalities
• Exponentially growing solutions:

• Conditions for unstable solutions:
i. parametric resonance
ii. tachyonic preheating (modulus displaced in I)

iii. tachyonic oscillations (oscillations reach I)

I



Necessary Conditions for 
Oscillons production

• Quantum fluctuations of the field grow as it oscillates around the 
minimum.

• The growth of fluctuations is sufficiently strong for non-linear 
interactions to become important.

• The potential is shallower than quadratic away from the 
minimum in some field space region relevant for the dynamics of 
the field.

Attractive ‘force’ 
for λ > 0i λ+ . . .



Moduli Potentials



Lattice simulations*
• LatticeEasy: to analyse strong growth of 

perturbations.

• Modified version to calculate also metric 
perturbations:

*Plus Floquet analysis



KKLT Oscillons

where Kcs denotes the vacuum expectation value (VEV) of the complex structure Kähler
potential and the dilaton, W0 is the vacuum expectation value of the Gukov-Vafa-Witten
flux superpotential [56]. The non-perturbative superpotential contribution Ae

�aT can
be generated by gaugino condensation of D7-branes or Euclidean ED3-branes. Both the
flux superpotential W0 and the prefactor of the non-perturbative e↵ect A are functions of
complex structure moduli and dilaton, while a is a coe�cient which depends on the source
of the non-perturbative e↵ect (e.g. a = 2⇡/N for a gaugino condensate from N D7 branes).
This setup has a supersymmetric AdS minimum at DTW = 0. To obtain a minimum in
the region where the e↵ective field theory is applicable Re(T ) � 1, the flux superpotential
has to have hierarchically small values. Such hierarchies can be obtained by stabilising
complex structure moduli close to so-called conifold points [57]. This potential is uplifted
to a dS minimum by adding some additional source (e.g. anti D3-branes or matter fields),

e↵ectively a standard uplifting term Vup '

⇣
T+T

2

⌘�2

is added to the potential.6 The total

scalar potential is given by

V/M
4
Pl =

e
Kcs

6⌧ 2
�
aA

2(3 + a⌧)e�2a⌧
� 3aAe�a⌧

W0

�
. (37)

This then leads to a minimum where supersymmetry is broken and the field value is shifted
by a factor ⇠ log

�
MPl/m3/2

�
[58] compared to the AdS supersymmetric minimum. Such a

shift influences the ratio between the mass of the field at the minimum of the potential and
the height of the barrier. As we see in due course, this allows for multiple oscillations in
the tachyonic region of the scalar potential. However, as we will discuss below, parametric
resonance is the dominant mechanism for the growth of fluctuations (and not tachyonic
oscillations). In our numerical analysis of the KKLT potential we concentrate on the
following standard parameter ranges

10�12
 W0  10�5

, 1  A  10 , 1  a  2⇡ . (38)

W0 is chosen to be hierarchically smaller than unity to allow for a stabilisation with
Re(T ) � 1 and the lower bound is chosen such that gravitino mass (and hence the moduli
masses) are large enough to safely avoid the cosmological moduli problem. The range for
A is chosen that we do not assume any hierarchical suppressions from this contribution.
For a we start from the largest possible value and the lower limit still corresponds to a
moderate number of D7 branes. The prefactor eKcs which rescales the overall potential is
set to unity.

The canonically normalised field � of the real part of T is given by

�/MPl =

p
3

2
log

�
T + T̄

�
. (39)

An example of the potential can be found in Figure 2 for W0 = 10�5, A = 10, and a = 2⇡.
We would like to begin our discussion with the results of Floquet analyses of the

KKLT model with a = 2⇡, A = 10, and for two di↵erent values of W0: W0 = 10�12 and

6Di↵erent uplfiting mechanisms can give rise to di↵erent powers of T appearing in the uplifting po-
tential. For simplicity we just consider one example.
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the region where the e↵ective field theory is applicable Re(T ) � 1, the flux superpotential
has to have hierarchically small values. Such hierarchies can be obtained by stabilising
complex structure moduli close to so-called conifold points [57]. This potential is uplifted
to a dS minimum by adding some additional source (e.g. anti D3-branes or matter fields),

e↵ectively a standard uplifting term Vup '
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is added to the potential.6 The total

scalar potential is given by
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This then leads to a minimum where supersymmetry is broken and the field value is shifted
by a factor ⇠ log

�
MPl/m3/2

�
[58] compared to the AdS supersymmetric minimum. Such a

shift influences the ratio between the mass of the field at the minimum of the potential and
the height of the barrier. As we see in due course, this allows for multiple oscillations in
the tachyonic region of the scalar potential. However, as we will discuss below, parametric
resonance is the dominant mechanism for the growth of fluctuations (and not tachyonic
oscillations). In our numerical analysis of the KKLT potential we concentrate on the
following standard parameter ranges

10�12
 W0  10�5

, 1  A  10 , 1  a  2⇡ . (38)

W0 is chosen to be hierarchically smaller than unity to allow for a stabilisation with
Re(T ) � 1 and the lower bound is chosen such that gravitino mass (and hence the moduli
masses) are large enough to safely avoid the cosmological moduli problem. The range for
A is chosen that we do not assume any hierarchical suppressions from this contribution.
For a we start from the largest possible value and the lower limit still corresponds to a
moderate number of D7 branes. The prefactor eKcs which rescales the overall potential is
set to unity.

The canonically normalised field � of the real part of T is given by

�/MPl =

p
3

2
log

�
T + T̄

�
. (39)

An example of the potential can be found in Figure 2 for W0 = 10�5, A = 10, and a = 2⇡.
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Figure 2: Example potential of the Kählermodulus in KKLT for W0 = 10�5
A = 10 and a = 2⇡.

The solid black lines denote the field value at the minimum of the potential �min, the field
value at the inflection point of the potential �inf , and the field value at the local maximum
of the potential �max.

W0 = 10�5. In both cases, the Floquet exponents were calculated in Minkowski space, as
a function of the initial field value �(0) ⌘ �initial , essentially corresponding to di↵erent
amplitudes of oscillation. For �initial we assumed values within the following range

�min < �initial  �min +
�max � �inf

2
, (40)

where �min is the field value at the minimum of the potential, �inf is the field value at
the inflection point, and �max the field value at the local maximum of the potential (see
Figure 2).

The results of our analyses are presented in Figure 3 for W0 = 10�12 (left) and W0 =
10�5 (right). The Figure shows the real part of the Floquet exponent compared to the
Hubble parameter |<[µk]|/Hinitial, where

Hinitial =
1

MPl

r
V (�initial)

3
. (41)

In both cases, there is a broad instability band with |<[µk]|/Hinitial ⇠ O(10) for k . 0.5m.
Two other thin and weaker bands are also visible for k > 0.5m. They are, however,
narrower and also weaker than the first band. In view of these results, we would expect
a noticeable amount of growth for modes with comoving wavenumbers k . 0.5m in an
expanding universe. To investigate the evolution of the fluctuations in greater detail we
performed lattice simulations. The results are presented in the next section.

3.1.1 Results from lattice simulations

Lattice simulations of the evolution of Kählermodulus in KKLT were performed for the
two sets of parameters which were also used to perform the Floquet analyses, i.e. for
W0 = 10�12 and W0 = 10�5, and in both cases with a = 2⇡ and A = 10. The initial
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GW spectrum: KKLT

*Overall scaling can lower frequency but also lower the amplitude



Blow-up Potential in LVS

ai =
2⇡
N
). In the LVS, the scalar potential for the Kähler moduli can be organised in an

inverse volume expansion and the leading contributions are given by:

VO(V�3)

M
4
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=
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✓
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4V3

#
+ VdS ,

(48)

where ⇠̂ = ⇠/g
3/2
s , VdS = D/V

� (1  � < 3) is an additional contribution from localised
sources where D is fine-tuned to uplift the potential to an approximate Minkowski min-
imum. In addition, there is an overall rescaling of the entire potential arising from the
VEV of the complex structure Kähler potential eKcs , which, unless otherwise stated, we
set to unity. The minimum with respect to the small moduli is given by

aiAie
�ai⌧i =

3↵↵i

V

(1� ai⌧i)

(1� 4ai⌧i)

p
⌧i . (49)

In the limit V ! 1 this gives
ai⌧i ⇡ log (V) . (50)

The volume and D are fixed by minimising the potential with respect to the volume and
demanding the vanishing of the vacuum energy:

@V

@V
= 0 , V = 0 . (51)

This leads to an exponentially large value of the volume in the minimum (in string units)

logV ⇡
⇠̂

2

 
X ↵i↵

a
3/2
i

!�1

. (52)

The value of D can be determined numerically. The masses for the volume and small
moduli in the minimum are given by

m
2
⌧i

' M
2
Pl

W
2
0 (logV)

2

V2
, (53)

m
2
V

' M
2
Pl

W
2
0

V3 logV
. (54)

The canonical normalisation of the blow-up modulus is given by � =
q

4
3V ⌧

3/4
2 .

Here we consider the case where one of the blow-up moduli is displaced from the
minimum, while keeping all the other fields, in particular the volume at its minimum.

Notice that in terms of the canonically normalised field � this potential is approxi-
mately of the form:

V ⇠ V0

⇣
1� (�)e�↵�

4/3
⌘2

, (55)

so its behaviour is similar to the exponential potentials mentioned before. Notice also
that the coe�cient of the exponential ↵ is hierarchically large since ↵ ⇠ O(V2/3). In this
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Figure 10: The potential of the blow-up Kähler modulus in terms of the canonically normalised
field, normalised to the height of the plateau V0 ' 1.794⇥10�12

M
4
Pl and with the minimum

shifted to zero. The black line denotes the inflection point. The parameter choices are:
W0 = Ai = ⇠ = a2 = 1, gs = 0.2, � = 2 and n = 10.

Figure 11: Left: Evolution of the mean of the blow-up modulus h�i as a function of the scale
factor a(t). The solid black line denotes the field value at the inflection point of the potential.
One can see that the initially homogeneous field decays into inhomogeneous fluctuations
within four oscillation. Right: Evolution of the variance h��

2
i
1/2. The evolution becomes

non-linear when h��
2
i
1/2 becomes comparable to the amplitude of oscillation of homogeneous

component h�i.
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Figure 13: Four snapshots of the energy density in a 2d simulation for our LVS blow-up modulus
example at a = 1.26, a = 2, a = 3.02 and a = 4.02. Clearly, asymmetric oscillons are formed
at a ⇠ 3. Videos of the simulations can be found here [59].
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3D lattice simulations (Blow-up vs KKLT)



Gravitational Waves
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Figure 15: Spectrum of Gravitational waves ⌦GW,e(k) as a function of the physical momentum
a
�1

k. The spectrum is shown at di↵erent moments in time which correspond to: the end
of linear preheating at a ' 1.16 (blue), shortly after the beginning of the non-linear regime
at a ' 1.45 (green), at a ' 2.1 (orange), and at the end of the simulation a ' 2.5 (red).

oscillons do not produce GW. One possible reason for the (yet) absent peaky structure
could be that the latter is simply hidden by the stochastic background produced during
and shortly after the tachyonic oscillations. This background is produced once during
the early stage of preheating and is subsequently redshifted due to the expansion of the
Universe. Oscillons, however, are an active source of GW production until they decay. If
they live for a su�ciently long period and e�ciently produce GWs, the peaky structure in
the spectrum of GWs will eventually become visible at some later stage of the evolution.
The final spectrum shown in Figure 15 (red curve), is not expected to be the final result
since oscillons continue to be produced. If the universe would instantly reheat at that
time the frequencies of the plateau (corresponding to a

�1
k/m ⇠ 0.1 � 1 in Figure 15)

would lie today at

f0 ⇠ 108 Hz� 109 Hz , with ⌦GW,0 ⇠ 10�10
� 5⇥ 10�10

. (57)

Similar as in KKLT, an overall rescaling of the potential from complex structure moduli
which is smaller than unity would also lead to lower frequencies. Altering, other model
parameters could in principle also alter the frequencies of the stochastic GW background.
Furthermore, the volume modulus being the lightest modulus in this scenario, will at
some point start to dominate the energy density of the Universe. This, in turn, leads to
an additional period of matter domination and thus pushing not only the frequencies but
also ⌦GW,0 to lower values.

4 Conclusions and open questions

Moduli fields may be the only stringy remnants that survive at low energies and partic-
ularly after a period of inflation. It is usually stated that the dilution e↵ect of inflation
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*No oscillons for volume nor fibre moduli but also no overshooting!
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Moduli Stars
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Boson and Fermion Stars

• Fermion stars: Gravity vs fermion pressure

• Boson stars: Gravitational BEC

310 T. D. Lee and V. Pang. Nontopologica/ soliion,s

optimal values of (i), (ii) and (iii) for the “key” experimental data mentioned in section 5.1. The result
[95] is reasonably satisfactory.
There are many applications of soliton models in the study of hadronic structure and hadron—hadron

interactions. Many of these solitons are variations of the Friedberg—Lee model described in this section
[107—113].A nontopological soliton model based on the linear sigma model was developed by Kahana,
Ripka and Soni [114]. It contains a pion field in addition to the scalar field a-. Subsequent study by
Kahana and Ripka [1151demonstrated the importance of the pion degrees of freedom. A similar model
has also been studied by Birse and Banerjee [1161and by Celenza and Shakin [117].Among topological
solitons, the Skyrme model [118,1191 is the most widely used.

6. Soliton stars

6.1. General discussion

So far, our analysis does not include gravity. Since the existence of soliton solutions depends
sensitively on the nonlinearity of the field theory and since general relativity is highly nonlinear, it is
natural to inquire whether the introduction of the gravitational interaction may alter significantly the
previously discussed solutions, especially when their masses become astronomically large. This problem
is also of interest from another point of view: any (cold) stable star is, by definition, a nontopological
soliton. Its equilibrium configuration has been calculated based on the equation of state of normal
matter and the gravitational attraction. On the other hand, a major fraction of the total mass of the
universe is believed to be in the form of “dark matter”, of which very little is known except its
existence. Now, nontopological solutions already can exist without gravity and (in that case) with no
upper bound on their masses; therefore, they may be of astronomical sizes. It is reasonable to explore
whether such solutions with gravity may account for structures outside our usual concept of normal
stars. As we shall see, the interplay between the gravitational field and other nonlinear matter fields can
lead to several novel types of stellar configurations, such as boson stars, mini-boson stars and fermion
soliton stars. These solutions will be discussed in this chapter.
We begin with a brief review of the equilibrium configurations of (cold) normal stars: the solutions

for white dwarfs by Chandrasekhar [120]and neutron stars by Oppenheimer and Volkoff [291.

6. 1.1. Chandrasekhar limit (review)
Consider a white dwarf, or a neutron star, of radius R, mass M and fermion number N. The

gravitational force is balanced by the Fermi pressure. From the equipartition of energy we expect, for
the equilibrium state, the magnitude of the gravitational energy to be comparable to that of the kinetic
energy. For ultrarelativistic fermions, we have

GM2/R—N4”3/R. (6.1)

where G is Newton’s constant. Let m be the effective mass, defined by

N=M/m. (6.2)

For a neutron star, the fermions are neutrons andm is the neutron mass mN; for a white dwarf, they are
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the possibility that condensates of these particles may form and survive at late times in

the form of boson or fermion Stars.

Standard fermion stars such as neutron stars are prevented from collapsing because of

the Pauli exclusion principle. Their stability is a balance between the fermion degeneracy

pressure and gravitational attraction. Boson stars have been studied using a hypothetical

long-lived complex or real scalar field. In this case the stability is due not to the Pauli

principle, since bosons are subject to the Bose-Einstein statistics, but to the Heisenberg

uncertainty principle that constrains momenta to be bound by the inverse radius of the

star. Several cases of boson stars have been studied depending if the field is complex, for

which a global U(1) may exist and guarantee stability (e.g. Q-stars coming from Q-balls),

or for real scalars in which case the boson star is usually named an ‘oscillaton’ (not to

be confused with the early universe ‘oscillons’ ). If the scalar field is an axion it leads to

axion stars. In each case the structure of the boson star varies substantially depending on

the self couplings of the boson fields. For a free massive scalar field the Compton wave

length � ⇠ 1/m is bound by the radius of the star R � 1/m and being balanced at the

corresponding Schwarzschild radius Rs = 2M/M
2
p leads to the critical mass Mc = M

2
p /m.

This can be of order the solar mass M ⇠ M� for scalar masses of order m ⇠ 10�10 eV.

However, if self couplings are relevant the critical mass is of order Mc ⇠ M
3
p /m

2 just of

the same order of the Chandrasekhar limit for fermion stars and then solar masses can be

obtained for scalar masses of order the neutron mass m ⇠ 1 GeV.

A typical string compactification has hundreds or thousands of complex moduli fields

that have di↵erent properties and may lead to completely di↵erent physics (e.g. dilaton,

complex structure moduli, Kähler moduli which in turn can be blow-up modes, fibre mod-

uli, etc.). Here we start a systematic study on how some of these moduli may give rise

to particular cases of boson stars which can be called ’moduli stars’. We also explore the

possibility for their fermionic partners, the ‘modulini’ as well as the gravitino can give rise

to a new class of fermion stars.

In order to give rise to a stable star the corresponding particle has to be quasi-stable

and then a candidate for dark matter. At the moment there are plenty of possibilities for

both fermions and scalars to be candidates for dark matter. String theory o↵ers many dark

matter candidates: matter fields from a hidden sector, moduli (including the dilaton and

the many axions), the gravitino, etc.

The most studied boson stars in field theory correspond to the case of a single complex

scalar field � with a global U(1) symmetry � ! e
i↵�. The corresponding Noether charge

is conserved and prevents the condensate to decay. Nontopological solitons such as Q-balls

are the prime examples, that are already stable before turning gravity on. Furthermore

the global U(1) symmetry allows for a time dependence of �, �(x, t) = '(x)ei!t while

keeping a static spacetime metric (a constant time translation is compensated by a U(1)

transformation by a choice of the parameter ↵). For real scalars there is no conserved

charge and stability is not automatic.

We may inquire if Q-balls are realised in string theory. In standard string compactifi-

cations global U(1)s are not possible except for the following exceptions:

– 2 –
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keeping a static spacetime metric (a constant time translation is compensated by a U(1)
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in a sphere of radius R takes the form

E(R) = �
GMmf

R
+

✓
9⇡

4

◆1/3
N

1/3

R
, (2.1)

where the first term describes the attractive gravitational potential and the second one is

the (relativistic) kinetic energy of the fermion on the surface of the star. Here M = Nmf

is the total mass of the star. We have used the relativistic limit in which the kinetic energy

is roughly kf � mf for a relativistic fermion of momentum kf . kf is determined by its

relation to the number density in Fermi statistics: N/(43⇡R
3) = k

3
f/(3⇡

2). If the second

term of the equation above dominates the star expands until the fermion density is so

small that the kinetic energy term becomes of order mf and the gravitational interaction

stabilises it.

A rough estimate of the maximum mass and minimum radius of the star can be made

by noticing that both energies are of the same order (E(R) = 0) for a maximum value of

N = Nmax giving a total mass:

Mmax ⇠
M

3
P

m
2
f

, (2.2)

which gives the standard Chandrasekhar limit. The corresponding minimum radius can be

estimated by taking kf ⇠ mf :

Rmin ⇠
MP

m
2
f

. (2.3)

For a neutron with mass mN ⇠ 1 GeV these expressions give the standard results of

Mmax ⇠ M� and Rmin ⇠ 2 Km.

2.2 Boson Stars

Boson stars are solitonic-like solutions of the coupled Einstein-Klein-Gordon equations.

The simplest case corresponds to a massive complex scalar � of mass m. The action is of

the type:

S =

Z
p
�g

✓
M

2
P

2
R� g

µ⌫
@µ�@⌫�� V (|�|)

◆
, (2.4)

with V = m
2
|�|2. A boson star would correspond to a spherically symmetric configuration

with metric:

ds
2 = �A(r)2dt2 +B(r)2dr2 + r

2
�
d✓

2 + sin2 ✓d�2
�
. (2.5)

A static spherically symmetric configuration for the scalar field would not give solitonic

solutions due to Derrick’s theorem. However, a stationary spherically symmetric scalar

field of the form

�(r, t) = �R(r) e
i!t (2.6)

allows for a solution of the Einstein-Klein-Gordon equations from eq. (2.4) with a static

metric as above (time translations in � are compensated by a global U(1) transformation

� ! e
i↵�).
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Contrary to fermion stars the gravitational attraction is compensated by the Heisen-

berg principle to prevent collapse. Naively this implies that �x�p � ~ with �x = R and

�p = mc for a boson of mass m then the minimal radius is

Rmin ⇠
1

m
. (2.7)

From this we can obtain the maximal mass by setting the radius to the Schwarzschild

radius R = RS = 2GM

Mmax ⇠
M

2
P

m
. (2.8)

Comparing with fermion stars, fermionic stars are much heavier and larger than boson

stars for fermions and bosons of the same mass. For instance, for a boson with a mass

of a neutron m ⇠ 1 GeV the corresponding star radius is of order Rmin ⇠ 10�15 cm and

mass Mmax ⇠ 1036GeV ⇠ 10�21M�. To highlight that these objects are typically much

lighter than M�, they are usually called mini-boson stars [18, 19]. However, if interactions

are relevant this naive estimate can be modified [20]. For instance for a scalar field with

quartic couplings

V (|�|) =
1

2
m

2
|�|2 �

g

4!
|�|4 , (2.9)

the mass of the star becomes:

M ⇠ g̃
1/2M

2
P

m
⇠

M
3
P

m2
, (2.10)

with g̃ =
gM2

P

m2 the dimensionless quartic coupling. In this case the boson star mass takes

the same form as the Chandrasekhar limit for fermion stars if g ⇠ 1, therefore allowing for

macroscopic stars for scalar masses in the GeV range.

2.3 Oscillatons

The pattern of bosonic compact objects may be substantially expanded by considering real

scalar fields that we denote by ' [43]. As it is not possible to find a background field

ansatz that makes the metric time-independent [48–50], the t-t and r-r components of the

metric in eq. (2.5) become time-dependent. An equilibrium configuration of the star can

be found by expanding the background field '(r, t) as well as the metric functions A(r, t)

and B(r, t) in Fourier series. The corresponding solutions, called oscillatons, have been

found numerically and studied in di↵erent contexts [48, 49, 51, 52]. The solutions depend

crucially on the amplitude of the background field oscillations 'core ⌘ max{'(0, t)}. In

this section we briefly describe the known results already contained in the literature and

how they need to be modified to be extended to the case of string potentials.

We denote by ⇤ the typical field range of the canonically normalized field in the

potential under study. As an example, for an axion potential the scale ⇤ would typically

be ⇤ = 2⇡f , where f is the axion decay constant. Along with the mass of the particle, the

scale ⇤ plays a crucial role as it determines the maximum energy that can be stored in a
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Classification of Scalar Stars

Scalar G = 0 G = 1

Complex
Q-Balls

Global U(1)

Mini-Boson Stars Boson Stars

weak self-interactions strong self-interactions

Real
Oscillons

Oscillatons
attractive self-interactions

Table 1: Classification of complex and real scalar stars. Here and in the rest of the paper we denote
by “G = 0” the cases in which gravity e↵ects are negligible (where G is the Newton’s constant),
and by “G = 1” the cases in which gravity e↵ects are important.

interesting dynamics appear if the e↵ects of gravity become of the same order as those due

to self-interactions.

Note that the objects we consider in this work have a compactness6 comparable to

that of the corresponding black hole. The formation of such objects needs to be checked

for each specific model via dedicated lattice simulations. In the simplest and most model-

independent scenarios, self-interactions of a single field are su�cient to make the quantum

fluctuations grow and enter the non-linear regime. The growth can take place mainly

through parametric resonance (see [22] and references therein) or tachyonic resonance [57].

Focusing on the models studied in the present paper, parametric and tachyonic resonance

are e�cient production mechanisms in the case of the KKLT model and ↵-attractors T-

models respectively7. In the case of ↵-attractor E-models (or Starobinsky-like potentials),

the production might be di�cult to achieve through parametric and/or tachyonic reso-

nance, but it could take place through other mechanisms, e.g. i) through parametric

resonance induced by a second oscillating field [60], ii) through some enhancement in the

scalar power spectrum, as for the formation of primordial black holes (see [61] for recent

work in this direction), iii) through dynamical clustering of lighter objects [62].

A better understanding of the evolution of moduli stars is important for a number of

reasons:

1. Non-spherically symmetric oscillons produce GWs due to the dynamics of each single

object [63]. The GW spectrum at production is peaked at frequencies f ⇠ O(m),

where m is the mass of the scalar field. The current diluted value is roughly given by

f &
⇣

m

TeV

⌘
5/6

Hz , (1.1)

where the uncertainty is related to the knowledge of the exact production time and

is removed by numerical simulations. For m ⇠ 109GeV the peak would fall in the

LIGO frequency range. In [64], the authors parameterized the oscillon profile as

�(t,x) = �(t)F(t,x) , (1.2)

6
The compactness is defined as C = M/R, where M is the total mass of the RSS and R its radius,

containing 90% of the mass of the star.
7
For ↵-attractor T-models [58, 59] the region of the parameter space investigated is borderline in terms

of the e�ciency of the tachyonic resonance production mechanism, and should be checked through lattice

simulations. The formation of RSSs is however beyond the scope of this work and we leave it for the future.
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(e.g. Axion and Moduli stars)



Regimes
• Dilute

• Dense



Are there stringy 
boson/fermion stars?

Candidates:
Long-lived (stable) gravitationally coupled  fields: 

• hidden sector fermions/bosons,
• moduli, 
• modulini, 
• gravitini



Stringy Fermion Stars

Gravitino and modulini:

�R = 0 (the true vacuum) outside. In this approximation gradients are neglected and

extremising E! with respect to ! gives !0 = Q/(�2
0Vol) and substituting into E! implies:

E!0
= V (�0)Vol +

Q
2

2�2
0Vol

. (2.22)

Extremising now with respect to the volume Vol leads to Vol = Q/

p
2�2

0V and:

E = Q

s
2V (�0)

�2
0

. (2.23)

Therefore the value of �0 can be obtained by extremising the quantity: V/�2
R. This

coincides with the minimum of V̂ (and therefore solves the equations of motion) for the

value of ! = !0 =
p

2V/�2
0 as it can be easily verified. Notice that for this value of !0 the

value of V̂ vanishes at the minimum �R = �0 and so the new minimum is degenerate with

the one at �R = 0 which remains a minimum of V̂ as long as !2
< µ

2 = V
00(0).

We then have that a charge Q configuration with constant energy localised in a finite

volume (the Q-ball) exists as long as there is a non zero minimum of the quantity V/|�|2.

Since the energy per unit charge is less than the mass of a single charged particle (!2
< m

2),

the Q-ball is stable against decay to a gas of individual particles.

Beyond the thin-wall approximation, a proper solution with non-vanishing gradient

terms solving the field equation for �R

�00

R +
2

r
�0

R + @�V = 0 (2.24)

can be found numerically but inferred by standard tunneling solution techniques work-

ing with the analogy of a particle in the inverted Euclidean potential. Several examples

including the thick wall case have also been found in the literature [69].

3 Compact Objects from Strings

Let us start with the fermion stars. In string compactifications there are several classes of

low energy fermions of mass m that could be dark matter candidates and then can be the

basis for exotic compact objects of maximum mass beyond which they can collapse to a

black hole M ⇠ M
3
P/m

2 and minimum radius R ⇠ MP/m
2. From the model independent

closed string sector, the gravitino has a mass m3/2 = MPW0/V which can be in the mass

range from TeV to 10�2
MP and therefore a gravitino star of mass M ⇠ V

2
MP/W

2
0 and

radius R ⇠ V
2
/(MPW

2
0 ). Modulini, the fermionic partners of moduli fields, also have

a mass m ⇠ m3/2 leading to similar compact objects. In summary for TeV fermions

coupled only gravitationally the corresponding stars would have maximum masses of order

M ⇠ 1048GeV ⇠ 10�9M� and radius R ⇠ 10�3 cm. In general for the Large Volume

Scenario (LVS) [70, 71], in the range 103  V  109 for which the e↵ective field theory is

valid and the cosmological moduli problem is not present, we may have fermion stars with

maximal mass and minimum radii in the range

1 g . M . 1015 g , 10�27 cm . R . 10�15 cm . (3.1)
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The simplest case corresponds to a massive complex scalar � of mass m. The action is of

the type:

S =

Z
p
�g

✓
M

2
P

2
R� g

µ⌫
@µ�@⌫�� V (|�|)

◆
, (2.4)

with V = m
2
|�|2. A boson star would correspond to a spherically symmetric configuration

with metric:

ds
2 = �A(r)2dt2 +B(r)2dr2 + r

2
�
d✓

2 + sin2 ✓d�2
�
. (2.5)

A static spherically symmetric configuration for the scalar field would not give solitonic

solutions due to Derrick’s theorem. However, a stationary spherically symmetric scalar

field of the form

�(r, t) = �R(r) e
i!t (2.6)

allows for a solution of the Einstein-Klein-Gordon equations from eq. (2.4) with a static

metric as above (time translations in � are compensated by a global U(1) transformation

� ! e
i↵�).
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In IIB string theory flux compactifications [125, 126] naturally fix the value of all the

complex structure moduli Ua and the dilaton S and reduce the number of vacua from a con-

tinuum to a discrete but large set of points determined by the quantised three-form fluxes.

In both DRS (Dasgupta, Rajesh, Sethi) ([125]) and GKP (Giddings, Kachru, Polchinski)

[126] we have flux stabilisation of the complex structure moduli and the dilaton of a con-

struction involving a Calabi-Yau orientifold X with internal G3 fluxes. While in both cases

the (static) solution requires that the fluxes are ISD (imaginary self-dual i.e. ⇤6G3 = iG3)

which is compatible with the Hodge decomposition G3 2 (2, 1)� (0, 3). Supersymmetry is

preserved only if there is no (0, 3) component as considered in DRS.

Kähler moduli Ti are not stabilised by the fluxes nor any perturbative e↵ect. The

reason behind this is the fact that there exists a Peccei-Quinn synmetry Ti ! Ti+ ici with

constant cis that together with the holomorphicity of the superpotential forbids any Ti

dependence of W to all orders in perturbation theory. However these moduli are the gauge

couplings for matter fields localised in D7 branes and therefore standard non-perturbative

e↵ects generate a superpotential for these fields. The total superpotential for closed string

moduli is

W = Wflux(S,U) +Wnp(S,U, T ). (2.4)

The source of non-perturbative e↵ects are Euclidean brane instantons and non-perturbative

dynamics in the field theory of D7 or D3 branes such as the condensation of gauginos in the

gauge sector of the D brane. In the past decade there has been substantial progress in the

understanding and computational control of Euclidean D brane instantons [127]. Gaugino

condensation, being a dynamical e↵ect, has been well understood from the standard 4d

e↵ective field theory (EFT) but it is more di�cult to study from the full 10d e↵ective

action and the full string theory.

mf = m3/2 =
W0

V
(2.5)

Wtree = Wflux(U, S) (2.6)

VF = e
K
⇣
K

�1
ab̄

DaWDb̄W

⌘
� 0 (2.7)

The starting point of the 4D EFT is the F-term 4d supergravity scalar potential for arbi-

trary superpotential W (�M ) and Kähler potential K(�M , �̄M̄ ) in units of Mp:

VF = e
K
⇣
K

�1
MN

DMWDMW � 3|W |
2
⌘

(2.8)

The tree-level Kähler potential for the Kähler moduli satisfies the celebrated no-scale prop-

erty K
�1
i|̄ KiK|̄ = 3 which is just a consequence of the homogeneity of V. Using this and

the fact that the flux superpotential does not depend on the Ti fields, it implies a positive

definite scalar potential for S and U and stabilises them supersymmetrically by solving

DUaW = DSW = 0. As long as these equations have solutions for di↵erent values of the
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candidates and quasi-stable particles, to name a few: matter fields from a hidden sector,

moduli (including the dilaton and the many axions), the gravitino (see for instance [22]).

But even if the particle decays relatively early in the history of the Universe it may still

give rise to (relatively) long-lived compact objects that contribute to the energy density

of the Universe for some time and may leave observational signatures such as GWs. We

explore here this wide arena by giving explicit examples of axion stars, moduli stars and

by discussing the realisation of Q-balls end extensions thereof in string theory.

The rest of this paper is organised as follows. In Section 2 we review the basics of

stars and Q-balls. Section 3 is devoted to the string theory realisation of such objects

and their phenomenology, including possible GW signatures. In Section 4 we discuss the

possible formation of compact objects, describing a possible new solution to the moduli

field equations that could lead to the formation of compact objects (4.1), and discussing

the possible formation of compact objects during an early matter era, which is generic in

string models (4.2). We present our conclusions and outlook in Section 5.

Concerning the notation, we always use the (�,+,+,+) convention for the metric

signature. The Planck mass mp is defined in terms of the Newton constant G

mp =

r
~c
G

' 1.2⇥ 1019GeV ' 2⇥ 10�5
g , (1.1)

and we will always take ~ = c = 1. The reduced Planck mass MP is defined through the

relation

m
2
p = 8⇡M2

P . (1.2)

The Planck length is

`p =

r
~G
c3

' 1.6⇥ 10�33 cm . (1.3)

The solar mass is

M� ' 2⇥ 1033 g ' 1057GeV . (1.4)

We also report the value of one parsec

1 pc = 3⇥ 1016m , (1.5)

and some conversion rules

1GeV ' 1.8⇥ 10�24 g ' 5⇥ 1013 cm�1
' 1.5⇥ 1024Hz . (1.6)

2 Compact Objects in Field Theory

In this section we briefly review di↵erent types of compact objects which have been dis-

cussed in field theory and we classify them according to the mechanism that makes them

stable against small perturbations. The first obvious example that we review is that of

fermion stars in which gravitational attraction is compensated by the fermion pressure

coming from Pauli’s principle, as in neutron stars. We then start the discussion of bosonic

– 3 –

candidates and quasi-stable particles, to name a few: matter fields from a hidden sector,

moduli (including the dilaton and the many axions), the gravitino (see for instance [22]).

But even if the particle decays relatively early in the history of the Universe it may still

give rise to (relatively) long-lived compact objects that contribute to the energy density

of the Universe for some time and may leave observational signatures such as GWs. We

explore here this wide arena by giving explicit examples of axion stars, moduli stars and

by discussing the realisation of Q-balls end extensions thereof in string theory.

The rest of this paper is organised as follows. In Section 2 we review the basics of

stars and Q-balls. Section 3 is devoted to the string theory realisation of such objects

and their phenomenology, including possible GW signatures. In Section 4 we discuss the

possible formation of compact objects, describing a possible new solution to the moduli

field equations that could lead to the formation of compact objects (4.1), and discussing

the possible formation of compact objects during an early matter era, which is generic in

string models (4.2). We present our conclusions and outlook in Section 5.

Concerning the notation, we always use the (�,+,+,+) convention for the metric

signature. The Planck mass mp is defined in terms of the Newton constant G

mp =

r
~c
G

' 1.2⇥ 1019GeV ' 2⇥ 10�5
g , (1.1)

and we will always take ~ = c = 1. The reduced Planck mass MP is defined through the

relation

m
2
p = 8⇡M2

P . (1.2)

The Planck length is

`p =

r
~G
c3

' 1.6⇥ 10�33 cm . (1.3)

The solar mass is

M� ' 2⇥ 1033 g ' 1057GeV . (1.4)

We also report the value of one parsec

1 pc = 3⇥ 1016m , (1.5)

and some conversion rules

1GeV ' 1.8⇥ 10�24 g ' 5⇥ 1013 cm�1
' 1.5⇥ 1024Hz . (1.6)

2 Compact Objects in Field Theory

In this section we briefly review di↵erent types of compact objects which have been dis-

cussed in field theory and we classify them according to the mechanism that makes them

stable against small perturbations. The first obvious example that we review is that of

fermion stars in which gravitational attraction is compensated by the fermion pressure

coming from Pauli’s principle, as in neutron stars. We then start the discussion of bosonic

– 3 –

Recall:



e.g. Volume modulus stars

The e↵ective field theory is valid for volumes of order V & 103 (⌧b & 102) which implies

that approximately m✓b . 10�22 eV (by taking e.g. Ab = 1, gs = 0.1 and 10�1 . ab . 1)

and therefore ✓b is a good candidate to be ULDM, although lighter and less constrained

masses are also possible. In the case ⌧b ' 103, the volume of the compact dimensions is

V ' 3 ⇥ 104. This value of the volume implies a high scale of supersymmetry breaking,

with a gravitino mass of order m3/2 ' 3⇥ 1013GeV.

It is interesting to ask whether it is possible to get the analogue of axion miniclusters

with this ULA. As we mentioned in Section 2 the formation of miniclusters needs large

fluctuations as initial conditions, that grow and collapse during radiation domination (or

immediately after the start of matter domination). The first obstruction to this is the

fact that there is actually no U(1) symmetry linearly realized in the four-dimensional

e↵ective field theory that describes the two-field system composed by the modulus and the

corresponding axion. In fact, the shift-symmetry of the volume axion is inherited from

the higher dimensional gauge symmetry of the C4 form, rather than coming from a U(1)

symmetry. Hence the large initial fluctuations needed for the formation of miniclusters

cannot be obtained from PQ U(1) symmetry breaking after inflation as in the QCD axion

case. The large initial fluctuations could be generated by a first order phase transition, as

suggested in [84]. However this mechanism does not work for ULAs, since the energy scale

µ of non-perturbative e↵ects that give mass to the axion would be required to be µ < MeV,

which is highly constrained from bounds on the number of relativistic degrees of freedom

during BBN [84, 85].

3.2 Moduli Stars

In this section we will show that the same solutions already obtained in [19, 48, 49, 51, 52,

54] imply that string moduli potentials support star-like solutions in the dilute regime. We

will explore the properties and possible phenomenological features of these objects. The

actual formation of such objects is partially discussed in Section 4. As briefly discussed in

Sec. 2.3, the task of finding equilibrium solutions in the dense regime is extremely involved

from the numerical point of view, in the case of generic potentials. We leave the numerical

analysis of the dense regime including gravity for the future.

In the single field case we can canonically normalize the field, so that the action is

simply given by

S =

Z
d
4
x
p
�g


�
g
µ⌫

2
@µ'@⌫'� V (')

�
. (3.8)

We consider a toy model potential that mimics the moduli potential expanded around the

minimum in ' = 0. For the analysis of the dilute regime an expansion up to fourth order

is su�cient:

V (') =
m

2

2
'
2 +

�

3!
'
3 +

g

4!
'
4
. (3.9)

The stringy examples studied below have distinctive properties, first we always observe

� < 0 and g > 09. This makes these models di↵erent from the axionic cases for which

9
Note the dimensions of the couplings [m] = [�] = 1 and [g] = 0.
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� = 0, g < 0. Second, the expansion in ' is such that the scale of all couplings is of

similar order and therefore the couplings are not strong enough to change substantially the

expression for the mass M ⇠ M
2
P/m typical for mini-boson stars to M ⇠ M

3
P/m

2. The

main reason for this is that there is only one mass scale in the expansion of a potential in

string compactifications and once this scale is factorised the dimensionless coe�cients are

naturally of O(1). This argument is similar to the argument against realising Starobinsky

inflation from string moduli (see for instance the appendix of [86]).

In order to study moduli stars we first assume a single harmonic, spherically symmetric

ansatz for the background field of the form

'(r, t) = '0(r) cos (!t) , (3.10)

where ! = m (1 + ✏) (✏ < 0) and |✏| ⌧ 1. We neglect the expansion of the Universe (i.e. we

assume that m � H) and we include weak gravity e↵ects, encoded in the Newtonian

potential � ⌧ 1 (O (�) ⇠ O (✏)) appearing in the metric

ds
2 = �(1 + 2�)dt2 + (1� 2�) dr2 + r

2
d⌦2

, (3.11)

where d⌦2 is the di↵erential solid angle and � satisfies the Poisson equation. It is useful

to rewrite all the equations in terms of dimensionless variables: we rescale the coordinates

(t, xi), the field ' and the energy density ⇢ as follows

t̃ = mt , x̃
i = mx

i
, '̃ =

'

⇤
, ⇢̃ =

⇢

m2⇤2
, !̃ = 1 + ✏ , (3.12)

where the scale ⇤ is defined as in Sec. 2.3. In the limit g ! 0, neglecting the gradient

energy10 and taking ⇤ = MP for the moment11, the physical system is described by the

following equations

'̃
00

0(r̃) +
2

r̃
'̃
0

0(r̃) = 2 (�(r̃)� ✏) '̃0(r̃) , (3.13)

�
00(r̃) +

2

r̃
�
0(r̃) =

'̃
2
0(r̃)

4
, (3.14)

where all the derivatives are taken with respect to the rescaled variables. In the limit of

vanishing interactions the solutions of this system obey a scaling relation [19]

(r̃, '̃,�, ✏) �!
�
r̃/⇣, ⇣

2
'̃, ⇣

2
�, ⇣

2
✏
�
. (3.15)

This can be used to find all solutions in the dilute regime. In particular, small amplitude

solutions can be obtained from generic solutions by rescaling with ⇣ ⌧ 1. The boundary

conditions follow from requiring asymptotic flatness and a regular solution at r̃ = 0

'̃(0) = '̃core , '̃
0(0) = 0 , '̃(1) = 0 , (3.16)

10
We approximate here the total energy as ⇢̃ = ˙̃'2/2+'̃2/2 ⇡ '̃2

0/2 which along with the Poisson equation

implies that � can be taken to be static in the dilute appoximation.
11
In the limit of vanishing interactions, the (⇤/MP)

2
term that would appear in the Poisson equation if

⇤ 6= MP could be reabsorbed through the rescaling of the field in eq. (3.12).
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2
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2
✏
�
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⇤ 6= MP could be reabsorbed through the rescaling of the field in eq. (3.12).
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�
0(0) = 0 , �(1) = 0 . (3.17)

In practice, in the dilute regime one can use the scaling in eq. (3.15) to fix '̃core = 1 and

then vary �(0) and ✏ until the correct boundary conditions at r̃ � 1 is found via a shooting

method.

The solution to the system in eq.s (3.13), (3.14) can be written in integral form as [49, 52]

'̃0(r̃) = 1 + 2

Z r̃

0
dr

0
r
0

✓
1�

r
0

r̃

◆�
�(r0)� ✏

�
'̃0(r

0) , (3.18)

�(r̃) = �(0) +

Z r̃

0
dr

0
r
0
'̃
2
0(r

0)

4
�

M̃(r̃)

8⇡ r̃
, (3.19)

where we defined M̃ of the star through the relations12

M(r) =

✓
⇤2

m

◆
M̃(r̃) , M̃(r̃) = 4⇡

Z r̃

0
dr̃

0
r̃
02
⇢̃(r̃0) . (3.20)

Notice that in the dilute regime, asymptotic flatness implies that at r̃ � 1 the Newtonian

potential scales as �(r̃) ⇠ �M̃/r̃ and this condition fixes the value of �(0) in eq. (3.19).

We will parametrize the solutions using both the dimensionless total mass M̃ defined as

in eq. (3.20) (with r̃ ! 1) and the radius of the star R̃90, defined as the radius that

contains 90% of the total mass of the star. It is straightforward to check that the rescaling

in eq. (3.12) acts on M̃ and R̃90 as follows

⇣
M̃, R̃90

⌘
�!

⇣
⇣M̃, ⇣

�1
R̃90

⌘
. (3.21)

In order to marginally take into account the first interaction terms in the potential in

eq. (3.9) we rescale it and the total energy density

Ṽ =
'̃
2

2
+ �̃

'̃
3

3!
+ g̃

'̃
4

4!
, ⇢̃ =

�
˙̃'
�2

2
+

('̃0)2

2
+ Ṽ , (3.22)

where we have redefined the dimensionless couplings

�̃ =
�⇤

m2
, g̃ =

g⇤2

m2
. (3.23)

The equation of motion (dropping subleading terms) and the Poisson equation are

'̃
00 +

2

r̃
'̃
0 =

�
2�+ 1� !̃

2
�
'̃+

�̃

2
'̃
2 +

g̃

6
'̃
3
, (3.24)

�
00 +

2

r̃
�
0 =

✓
⇤

MP

◆2
⇢̃

2
. (3.25)

Following [54], after using the ansatz in eq. (3.10) it is easier to solve the system by taking

an average of the previous equations integrating over a period 2⇡/!̃. Interestingly, the

12
We write the generic expression for the mass with ⇤ 6= MP for future reference.
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Figure 3. We plot radius of the stars R̃90 (in LVS and KKLT) as a function of the star mass
M̃ . Black dots correspond to the numerical solutions listed in Tab. 1 obtained varying the core
amplitude �'̃core from 10�6 (extreme left black dot) to 10�1 (extreme right black dot). The blue
dots are the numerical solutions for the KKLT potential (for core amplitudes in the range 10�6 to
10�2) that coincide with the LVS results in the dilute regime ��core . 10�3, as expected. The red
and blue dashed lines are found matching the numerical data with the function defined in eq. (3.29).
The light red and blue solid lines correspond to the asymptotic values obtained from eq. (3.30).
The blue region corresponds to a background amplitude �'̃core & 10�3 (or ��̃core & 10�3), where
the approximations used are not fully reliable, as explained in the main text.

3.2.2 Blow-up-like potentials

In this section we study the following phenomenological potential for the canonically nor-

malized modulus �

Vbu(�) = V0

✓
1� e

a
p
V

�
MP

◆2

, (3.38)

where V0 is an overall normalization that depends on the details of the compactification,

a is typically an O(1) parameter and the potential has a zero-energy minimum in � = 0.

This potential mimics that of blow-up moduli in the LVS and V is the volume of the

compactification space. The mass of blow up moduli is mbu ' O (1) /V while the scale ⇤

is essentially given by the string scale Ms = MP/
p
V. In terms of the rescaled field

�̃ =
�

Ms
=

p

V
�

MP
, (3.39)
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Figure 2. Left panel : the solid line is the profile of the star composed by the LVS modulus
obtained numerically, with background amplitude �'̃core = 10�6. Right panel : the solid line is
the Newtonian potential profile obtained numerically. Red dots correspond to the last term of eq.
(3.19) �(r̃) ' �M̃(r̃)/r̃, showing the expected behaviour of � at large r̃.

Sitter minimum of VKKLT in terms of the canonically normalized field �̃ = �
MP

=
q

2
3 log ⌧

is located at h�i ' 5.8. This potential is plotted in the right panel of Figure 1 in terms of

the field expanded around the minimum �̃ = h�̃i+ ��̃. The expansion of the potential up

to quartic order is

ṼKKLT(��̃) '
��̃

2

2
� �̃KKLT

��̃
3

3!
+ g̃KKLT

��̃
4

4!
+ . . . , (3.35)

where

�̃KKLT ' 30.6 and g̃KKLT ' 652.9 . (3.36)

To clarify the notation, the ansatz in eq. (3.10) takes the form

�'̃(r) = �'̃0(r) cos
�
!̃t̃

�
, ��̃(r) = ��̃0(r) cos

�
!̃t̃

�
, (3.37)

for the LVS and the KKLT volume moduli respectively. We numerically solve eq.s (3.26)

and (3.27) as described above, varying the initial core amplitude of the field in the ranges

(10�6
, 10�1) in the LVS case16 and (10�6

, 10�2) for the KKLT potential17. We find that

both potentials support star-like solutions and that they coincide in the dilute regime where

basically only the mass term in the potential is relevant. We report the values of the pa-

rameters for the LVS case in Tab. 1. Notice that the scaling in eq. (3.15) and eq. (3.21)

is manifest in the dilute regime where �'̃core . 10�3. We also report as an example the

field profile �'̃0(r) and the Newtonian potential in the LVS case with �'̃core = 10�6 in

Figure 2. In the Newtonian potential we also plot (red dots) the last term in eq. (3.19)

to show the asymptotic behaviour �(r̃) ⇠ �M̃(r̃)/r̃ at large r̃. The values of mass and

radius are reported in Fig. 3. The dashed blue line corresponds to the fit of numerical

16
As already mentioned, the truncation in eq. (3.32) is not a good approximation for the solution with

�'̃core = 10
�1

. We however include it to show that, assuming the potential is exactly the one in eq. (3.32)

we get the flattening expected in the case of repulsive interactions [60].
17
As the core amplitude gets larger and larger the numerics become more and more di�cult especially in

the KKLT case for which the interaction coupling gKKLT is large.
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Q-Balls*

which is expected not to di↵er substantially from the one-field case and will be explored

in the future.

The rest of the article is organised as follows: in the next section we briefly review the

Q-ball solutions for complex scalar field theories mostly to provide background for further

sections. In section 3 we present a basic discussion about fermion and boson stars and the

potential realisations in string theory. Section 4 concentrates on the concrete case of axion

stars in particular string scenarios. ...

2 Q-balls

Q-balls are particular cases of non-topological solitons. Let us consider a four-dimensional

complex scalar field � with Lagrangian symmetric under a global U(1).

L =

Z
d
3
x

✓
1

2
@
µ�@µ�

⇤ � U(|�|)
◆

(2.1)

The U(1) Noether current and charge are:

Jµ =
1

2i
(�⇤

@µ�� �@µ�
⇤) ; Q =

Z
d
3
xJ

0 =
1

2i

Z
d
3
x

⇣
�⇤�̇� h.c.

⌘
(2.2)

Assuming that � = 0 at the minimum of the scalar potential, it provides a Q = 0 vacuum

state. Configurations with charge Q 6= 0 can be obtained by minimising the total energy

subject to the constant Q constraint. That is we need to extremise the quantity:
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3
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where ! is a Lagrange multiplier. This expression can be rewritten as

E! =

Z
d
3
x

✓
1

2
|�̇� i!�|2 + 1

2
|r�|2 + Û(|�|)

◆
+ !Q (2.4)

where

Û!(|�|) = U(|�|)� 1

2
!
2|�|2. (2.5)

The kinetic term vanishes for :

�(x, t) = '(x)ei!t (2.6)

which for real '(x) provides a stationary configuration with time-independent but non-

vanishing energy and charge. The task of extremising with respect to ' is the same as

finding the tunneling solution for a 3-dimensional Euclidean action with potential Û(').

To simplify this task Coleman [] assumed large Q or the thin wall approximation such that

the field ' has a value '0 (to be determined by minimising the energy) inside a region

of volume V and ' = 0 (the true vacuum) outside. In this approximation gradients are

neglected and extremising E! with respect to ! gives !0 = Q/('2
0V ) and substituting into

E! implies:

E!0 = U('0)V +
Q

2

2'2
0V

(2.7)
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Complex scalar, U(1) global symmetry

Noether current and conserved charge

Extrema of energy

U minimum at Φ=0

Thin wall approximation (large Q)
extremising now with respect to the volume V leads to V = Q/

p
2'2

0U and:

E = Q

s
2U('0)

'
2
0

(2.8)

Therefore the value of '0 can be obtained by extremising the quantity: U/'
2. This coin-

cides with the minimum of Û (and therefore solves the equations of motion) for the value

of ! = !0 =
p
2U/'2

0 as it can be easily verified. Notice that for this value of !0 the value

of Û vanishes at the minimum ' = '0 and so the new minimum is degenerate with the one

at ' = 0 which remains a minimum of Û as long as !2
< µ

2 = U
00(0). We then have that a

charge Q configuration with constant energy localised in a finite volume (the Q-ball) exists

as long as there is a non zero minimum of the quantity U/|�|2. Since the energy per unit

charge is less than the mass of a single charged particle (!2
< m

2), the Q-ball is stable

against decay to a gas of individual particles. Once surface terms are taken into account

due to non-vanishing gradients, the geometry has to be the one with minimal area for a

given volume which is a sphere.

A proper solution with non-vanishing gradient terms can be found numerically but

inferred by standard tunneling solution techniques working with the analogy of a particle

in the inverted Euclidean potential. Furthermore extensions to thick wall cases have also

been found in the literature [? ].

3 Fermion and Boson Stars

3.1 Basics of fermion stars

Neutron stars are understood in terms of a gas of fermions for which their degeneracy

compensates for the gravitational attraction. Following the argument of Landau for neutron

stars for N free fermions of mass mf , the total energy in a sphere of radius R takes the

form:

E(R) = �
GMmf

R
+

✓
9⇡

4

◆1/3
N

1/3

R
(3.1)

In which the first term is the attractive gravitational potential and the second one is the

(relativistic) kinetic energy of the fermion in the surface of the star. Here M = Nmf is

the total mass of the star. We have used the relativistic limit in which the kinetic energy

K ⇠ kf � mf for a relativistic fermion of momentum kf and kf is determined by its

relation to the number density in Fermi statistics: N/(43⇡R
3) = k

3
f/(3⇡

2). If the second

term of the equation above dominates the star expands until the fermion density is so

small that the kinetic energy term becomes of order mf and the gravitational interaction

stabilises it.

A rough estimate of the maximum mass and minimum radius of the star can be made

by noticing that both energies are of the same order (E(R) = 0) for a maximum value of

N = Nmax giving a total mass:

Mmax ⇠
M

3
p

m
2
f

. (3.2)
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Q-balls in string theory?*

Global symmetries?

1. From (non) anomalous U(1)
2. From Peccei-Quinn symmetries

*Open strings:

MInimum for novanishing:
e.g. Kusenko (1997) for 
MSSM

symmetry is assumed to be broken in the closed string sector the global U(1) symmetry

remains unbroken and these terms are such that only U(1) preserving combinations are

allowed. The condition for the existence of Q-balls can be stated as the search for a

non-vanishing minimum for the quantity:

E
2 =

2UP
i qi|�i|

2
=

2(UD + Usoft)P
i qi|�i|

2
(3.79)

Notice that for small enough ⇠ the point �i = 0 is a minimum of the scalar potential U . But

it is straightfoward to see that there is a nonvanishing minimum of E above. To see this

explicitly we can follow [69] and consider the time dependent � fields: �i = ⇢ie
iqiwt and

use ‘spherical’ coordinates with the overall radial coordinate ⇢
2 =

P
i qi⇢

2
i =

P
i qi|�i|

2. It

is clear that the potential above is time-independent and quadratic in ⇢ and then there is

generically a minimum for ⇢ 6= 0 which is the condition for the existence of Q-balls. This

argument applies to both flat directions from the observable sector (as it was argued for

the MSSM in [69]) but also for the �i fields in a hidden sector coupled to the standard

model fields only through gravitational interactions. The properties of the corresponding

boson stars di↵er substantially: Q-balls from the observable sector have been considered

to have important phenomenological implications, especially if they carry lepton or baryon

number. Then they can play an important role for baryogenesis and constitute part of

dark matter [41, 98].

Since global symmetries are rare in string models it may be easier to consider solutions

for gauged symmetries (charged Q-balls). However there is a bound on the strength of

the corresponding gauge coupling compared to gravity. Solutions tend to exist if gravity

is stronger than the corresponding gauge interactions (see for instance [11, 99]). This may

be in conflict with the weak gravity conjecture [100] in string theory. In general the open

string sector of string compactifications is the most model dependent and it is di�cult to

establish model independent conclusions. However, even if non-topological solutions may

not exist, the attractive nature of gravity makes it very generic that the corresponding

boson star solutions will exist.

3.4 PQ-balls

We consider now the possibility to have Q-ball like solution from the PQ shift-symmetry

of closed string axions. This symmetry is usually broken by non-perturbative e↵ects giving

rise to non-trivial potentials for the corresponding axion field as we have discussed before.

However, in special cases its breaking is hierarchically suppressed compared to the potential

for the real part and it may be considered as a good approximate symmetry. This is the

case in the LVS for the overall volume where the volume axion receives a potential which

is doubly exponentially suppressed (i.e. terms proportional to e
�a⌧ for which ⌧ is itself

exponentially large whereas the rest of the Lagrangian is only suppressed by powers of

1/⌧).

In the general case of an exact PQ shift-symmetry for the axion we consider the two-

fields system described by the following action

S =

Z
d
4
xL =

Z
d
4
x [�f(⌧) [@µ⌧@

µ
⌧ + @µ✓@

µ
✓]� V (⌧)] , (3.80)
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use ‘spherical’ coordinates with the overall radial coordinate ⇢
2 =

P
i qi⇢

2
i =

P
i qi|�i|

2. It

is clear that the potential above is time-independent and quadratic in ⇢ and then there is

generically a minimum for ⇢ 6= 0 which is the condition for the existence of Q-balls. This

argument applies to both flat directions from the observable sector (as it was argued for

the MSSM in [69]) but also for the �i fields in a hidden sector coupled to the standard

model fields only through gravitational interactions. The properties of the corresponding

boson stars di↵er substantially: Q-balls from the observable sector have been considered

to have important phenomenological implications, especially if they carry lepton or baryon

number. Then they can play an important role for baryogenesis and constitute part of

dark matter [41, 98].

Since global symmetries are rare in string models it may be easier to consider solutions

for gauged symmetries (charged Q-balls). However there is a bound on the strength of

the corresponding gauge coupling compared to gravity. Solutions tend to exist if gravity

is stronger than the corresponding gauge interactions (see for instance [11, 99]). This may

be in conflict with the weak gravity conjecture [100] in string theory. In general the open

string sector of string compactifications is the most model dependent and it is di�cult to

establish model independent conclusions. However, even if non-topological solutions may

not exist, the attractive nature of gravity makes it very generic that the corresponding

boson star solutions will exist.

3.4 PQ-balls

We consider now the possibility to have Q-ball like solution from the PQ shift-symmetry

of closed string axions. This symmetry is usually broken by non-perturbative e↵ects giving

rise to non-trivial potentials for the corresponding axion field as we have discussed before.

However, in special cases its breaking is hierarchically suppressed compared to the potential

for the real part and it may be considered as a good approximate symmetry. This is the

case in the LVS for the overall volume where the volume axion receives a potential which

is doubly exponentially suppressed (i.e. terms proportional to e
�a⌧ for which ⌧ is itself

exponentially large whereas the rest of the Lagrangian is only suppressed by powers of

1/⌧).

In the general case of an exact PQ shift-symmetry for the axion we consider the two-

fields system described by the following action

S =

Z
d
4
xL =

Z
d
4
x [�f(⌧) [@µ⌧@

µ
⌧ + @µ✓@

µ
✓]� V (⌧)] , (3.80)
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leaves in the GW spectrum. Clearly, a numerical analysis of these phenomena, although

highly interesting in the GW astronomy era, is beyond the scope of this article. Such GW

signals could shed light on the very first instants of the Universe’s history, not accessible

within optical astronomy.

3.3 Q-Balls from Open Strings

The space of open string moduli is vast, model dependent and much unexplored yet. But

there are concrete cases that can be considered. The typical examples are moduli corre-

sponding to the position of D-branes in type II string compactification but also Wilson

lines. In the four-dimensional e↵ective field theory they appear as chiral matter multiplets

that do not appear in the superpotential but they may be charged under Abelian and/or

non-Abelian gauge interactions. They can be part of the observable sector containing the

standard model fields or be part of a hidden sector which is coupled only gravitationally

to the standard model.

If the fields do not have holomorphic superpotential couplings the main source of the

scalar potential are D-terms. Generically there are many supersymmetry preserving D-flat

directions that correspond to the open string moduli.

In order to explore the possibility of boson stars from open string moduli, a first

attempt is to look for non-topological solitons such as Q-balls. At first, the general string

theoretical property that no-global symmetries are present in string theory seems to be

an obstacle to have Q-balls. There is however a concrete way to have low-energy Abelian

symmetries as remnants of anomalous or non-anomalous gauge U(1)s for which the gauge

field gets a mass by the Stückelberg mechanism in which the gauge field absorbs an axion-

like field to get a mass but no Higgs field charged under the U(1) gets a vev (see for

instance [93]). In this case a perturbatively exact global U(1) symmetry remains at low-

energies which can be the basis of Q-ball solutions.

Following a procedure analogous to an analysis in the MSSM [69] case, let us consider

a number of canonically normalised scalar fields �i with positive, negative or zero charges

under the global U(1). The source of their potential are supersymmetric D-terms of the

original local U(1):

UD = g
2

 
⇠ �

X

i

qi|�i|
2

!2

(3.77)

where the Fayet-Iliopoulos coe�cient ⇠ depends on the closed string moduli. In particular

for branes at singularities it is proportional to the size of the cycle, i.e. the resolution of

the singularity, and may hence be arbitrarily small. In this case there are solutions of the

D-term equations that have vanishing �i vevs: after the breaking of supersymmetry these

fields get potentials from the standard soft-supersymmetry breaking terms:

Usoft =
X

i

m
2
i |�i|

2 +

0

@
X

ijk

Aijk �i�j�k +
X

ij

Bij �i�j + h.c.

1

A , (3.78)

where the coe�cients mi, Aijk, Bij are functions of the closed string moduli which are

assumed to be stabilised at the supersymmetry breaking minimum [94–97]. Since super-
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Closed string sector*
• Massive moduli + axion                

(generalised axion stars, m> 1 TeV)

• Axion much lighter                                            
(Ultra-light axion) 

• PQ symmetry  almost exact (PQ-balls?)

4.2.1 An explicit example

The Large volume Scenario [] provides a very concrete example...

We consider the simplest setup including just two Kählermoduli Tb = ⌧b + i b and

Ts = ⌧s + i 2. The EFT model can be described in terms of a Kähler potential K and a

superpotential W :

K � �2 log

 
V +

⇠̂

2

!
W = W0 +Ase

�asTs +Abe
�abTb , (4.5)

where ⇠̂ = ⇠hsi
3/2 (s is the dilaton field) and Ab, As are O(1) coe�cients...

The potential arising in such EFT is well known []:

V =
gs

8⇡

"
8

3
(asAs)

2
p
⌧se

�2as⌧s

V
� 4asAsW0

⌧se
�as⌧s

V2
+

3⇠W 2
0

4g3/2s V3

#
+ �VdS , (4.6)

where �VdS is an additional contribution needed to achieve a de Sitter vacuum and we have

implicitly set  s = ⇡. The terms containing  b are usually omitted since they are very

suppressed. The leading contribution that includes  b takes the form

V � e
K
h
K

TbT̄bKTb@T̄b
W +K

TbT̄b@TbW KT̄b

i
=

gs

4⇡
abAb⌧be

K
e
�ab⌧b

⇣
e
iab b + e

�iab b

⌘
=

=
gs

2⇡
abAb

e
�ab⌧b

⌧
2
b

cos (ab b) , (4.7)

where we used that eK ' ⌧
�3
b . The mass of the axion is then

m =

s
gsAba

3
b

2⇡

e
�ab⌧b

2

⌧b
. (4.8)

Since we want the mass to be of order 10�22 eV, we need to assume that the term �VdS in

the potential uplifts the vacuum energy to a value smaller than the current dark energy

value. For practical purposes, the axion potential becomes

V =
gs

2⇡
abAb

e
�ab⌧b

⌧
2
b

[1 + cos (ab b)] , (4.9)

whose vanishing energy minimum is in ab b = ⇡. In Fig. 1 we report the value of the mass

for di↵erent values of ab (we assumed gs = 0.1 and Ab = 1) to show that it is compatible

with  b being an ULA for values of ⌧b & 100 (i.e. V & 103).

• Discuss the string scale, KK scale that come out from these values for the volume.
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PQ Balls?*

symmetry is assumed to be broken in the closed string sector the global U(1) symmetry

remains unbroken and these terms are such that only U(1) preserving combinations are

allowed. The condition for the existence of Q-balls can be stated as the search for a

non-vanishing minimum for the quantity:

E
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2UP
i qi|�i|

2
=

2(UD + Usoft)P
i qi|�i|

2
(3.79)

Notice that for small enough ⇠ the point �i = 0 is a minimum of the scalar potential U . But

it is straightfoward to see that there is a nonvanishing minimum of E above. To see this

explicitly we can follow [69] and consider the time dependent � fields: �i = ⇢ie
iqiwt and

use ‘spherical’ coordinates with the overall radial coordinate ⇢
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P
i qi⇢

2
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P
i qi|�i|

2. It

is clear that the potential above is time-independent and quadratic in ⇢ and then there is

generically a minimum for ⇢ 6= 0 which is the condition for the existence of Q-balls. This

argument applies to both flat directions from the observable sector (as it was argued for

the MSSM in [69]) but also for the �i fields in a hidden sector coupled to the standard

model fields only through gravitational interactions. The properties of the corresponding

boson stars di↵er substantially: Q-balls from the observable sector have been considered

to have important phenomenological implications, especially if they carry lepton or baryon

number. Then they can play an important role for baryogenesis and constitute part of

dark matter [41, 98].

Since global symmetries are rare in string models it may be easier to consider solutions

for gauged symmetries (charged Q-balls). However there is a bound on the strength of

the corresponding gauge coupling compared to gravity. Solutions tend to exist if gravity

is stronger than the corresponding gauge interactions (see for instance [11, 99]). This may

be in conflict with the weak gravity conjecture [100] in string theory. In general the open

string sector of string compactifications is the most model dependent and it is di�cult to

establish model independent conclusions. However, even if non-topological solutions may

not exist, the attractive nature of gravity makes it very generic that the corresponding

boson star solutions will exist.

3.4 PQ-balls

We consider now the possibility to have Q-ball like solution from the PQ shift-symmetry

of closed string axions. This symmetry is usually broken by non-perturbative e↵ects giving

rise to non-trivial potentials for the corresponding axion field as we have discussed before.

However, in special cases its breaking is hierarchically suppressed compared to the potential

for the real part and it may be considered as a good approximate symmetry. This is the

case in the LVS for the overall volume where the volume axion receives a potential which

is doubly exponentially suppressed (i.e. terms proportional to e
�a⌧ for which ⌧ is itself

exponentially large whereas the rest of the Lagrangian is only suppressed by powers of

1/⌧).

In the general case of an exact PQ shift-symmetry for the axion we consider the two-

fields system described by the following action

S =

Z
d
4
xL =

Z
d
4
x [�f(⌧) [@µ⌧@

µ
⌧ + @µ✓@

µ
✓]� V (⌧)] , (3.80)
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where the two fields can be identified as the real and imaginary parts of a complex modulus

T = ⌧ + i✓ and f(⌧) = KTT is the second derivative of the Kähler potential K24. In the

following we take the standard assumption in a Q-ball analysis with a flat Minkowski

metric, i.e. neglecting gravitational e↵ects, and we further assume that the potential V (⌧)

has a runaway to zero at ⌧ ! 1.
25 This runaway, in terms of the canonically normalised

field ', is assumed to be exponential which is precisely realised for the overall volume in

the LVS. The action is then invariant under a PQ shift-symmetry, i.e. a constant shift of

the axion field

✓ ! ✓ + const. (3.81)

The equation of motion for the axion field ✓ takes the current conservation form

@µ (f@
µ
✓) ⌘ @µJ

µ = 0 , (3.82)

where J
µ is a conserved current associated to the symmetry in eq. (3.81). The conserved

current and charge are then

J
µ = f@

µ
✓ , Q =

Z
d
3
xJ

0 =

Z
d
3
x f ✓̇ . (3.83)

Expanding eq. (3.82) we get

f ✓̈ � fr
2
✓ + f⌧ ⌧̇ ✓̇ � f⌧r⌧ r✓ = 0 , (3.84)

while the equation of motion for ⌧ is

2f ⌧̈ + f⌧ ⌧̇
2
� 2fr2

⌧ � f⌧ (r⌧)2 + f⌧ (r✓)2 � f⌧ ✓̇
2 + @⌧V = 0 . (3.85)

In the regime in which gravity is negligible we can consider the possibility that the PQ

shift-symmetry can play a similar role as the U(1) global symmetry in Coleman’s Q-balls.

After all, redefining the field T in terms of � = e
�T , the PQ shift-symmetry T ! T + i↵

becomes � ! e
�i↵�. as in the Q-balls case. However this field redefinition is not that

straightforward as we will see now.

Formally, to extremise the energy keeping Q constant we can consider the quantity:

E! =

Z
d
3
x

h
f(⌧)

⇣
✓̇
2 + ⌧̇

2 + (r✓)2 + (r⌧)2
⌘
+ V (⌧)

i
+ 2!

✓
Q�

Z
d
3
x@0(f✓)

◆
=

=

Z
d
3
x

h
f(⌧)

⇣
(✓̇ � !)2 + ⌧̇

2 + (r✓)2 + (r⌧)2
⌘
+ V̂ (⌧)

i
+ 2!Q . (3.86)

Here again ! starts as a Lagrange multiplier. The e↵ective potential is now:

V̂ (⌧) = V (⌧)� !
2
f(⌧) , (3.87)

and the ✓-dependent terms are minimised for:

✓̇ = ! , r✓ = 0 . (3.88)

24
In the following we will leave the ⌧ -(or '-)dependence understood in the functions f(⌧) and f(').

25
The potential may also feature another minimum at finite ⌧ as in LVS.
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for Q-balls based on charge conservation and the fact that the Q-ball is the configuration of

minimal energy for a fixed charge is not clearly extended for PQ-balls since both quantities

are not finite and there do not seem to be perturbative states charged under this symmetry.

For an exponential runaway behaviour of the potential V̂ ⇠ ��e
�b' (e.g. for large '

the potential V̂ is dominated by the !
2
f(⌧) term with b

2 = 2/↵ and ↵!
2 = � ), then an

asymptotic solution of eq. (3.90) is:

' = A+B ln r + . . . , (3.92)

where . . . denotes O(1/r) terms. For this @'V̂ ⇠ b�e
�b' and the constants A,B can be

determined by

B = 2/b, A =
1

b
ln

✓
�b

2

2

◆
, (3.93)

and the charge density f is proportional to r
�bB = 1/r2. The total charge diverges pro-

portionally to the radius

Q = !

Z
d
3
xf(⌧) /

Z
4⇡r2dr

!

r2
! 1 . (3.94)

Similarly the total energy would be dominated by the !
2
f term and would also diverge.

However, both charge and energy density are finite at finite r and decrease asymptotically

as 1/r2, while their ratio is proportional to !.

Notice that the charge of this solution is an axionic charge and can be written in

terms of its dual field in four-dimensions, an antisymmetric tensor Bµ⌫ . Roughly, f@µ✓ =

✏µ⌫⇢�@⌫B⇢� and so:

Q =

Z
d
3
xf ✓̇ /

Z
d
3
x ✏ijkHijk , (3.95)

where i, j, k denote spatial indices and H = dB. Spherical symmetry implies that B de-

pends only on r. This expression is of the standard RR-flux. In fact recall that for the

volume modulus the corresponding axion comes from the RR-field CMNPQ and the B field

is essentially Bµ⌫ = Cµ⌫mnJmn with m,n internal indices and Jmn the canonical two-form

for Calabi-Yau spaces. From these expressions it is natural to identify the PQ-ball charge

as a flux from the ten-dimensional theory. Notice that the PQ-ball charge is similar to the

charge of axionic black holes [101] for which H is exact and Q =
R
S2 B.

Besides the decompactification minimum, if the original scalar potential (! = 0) also

has a second minimum, corresponding to a four-dimensional spacetime, we may also con-

sider the possibility for ‘transitions’ from the ! 6= 0 minimum of V̂ and the finite ⌧ minimum

of V (⌧). We consider for simplicity the following potential

V̂ (') = a1e
�5'

� a2e
�4' + a3e

�3'
� !

2
e
�2'

, (3.96)

where the last term come from !
2
f in eq. (3.87) with ↵ = 1/2. It is possible to impose that

such a potential has a vanishing energy stationary point in '0 requiring V ('0) = V
0('0) =
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Figure 5. Modified potential V̂ for di↵erent values of the constant !.

0, that translates into two requirements for the coe�cients

a2 = !
2
e
2'0 + 2a1e

�'0 , a3 = 2!2
e
'0 + a1e

�2'0 . (3.97)

Requiring that '0 is also a minimum leads to another condition on a1. For all purposes of

the subsequent discussion we take '0 = 5 and a1 = 104 that ensure that '0 is a minimum.

Varying the value of ! leads to a modification of the potential that feature a second AdS

minimum, as shown in Fig. 5. Classical paths can be found connecting these two points

which would correspond to symmetry breaking points in the Q-balls case. We solve the

bounce equation in eq. (3.90) for the case ! = 0.025 (see left panel of Fig. 6 for the

inverted potential) and we get a thick-wall solution as shown in the right panel of Fig.

626. Notice that from the inverted potential it is possible to start from the new minimum

to either the (shifted) compactified vacuum or to the decompactified vacuum at infinity.

Clearly, the total charge is infinite in this case also.

We have seen that the PQ-balls solutions are mathematically very similar to the original

Q-balls, however they have di↵erent physical properties. In particular the fact that Q-balls

correspond to the minimum energy configurations for a fixed charge Q does not extend

to the PQ-balls case since the total charge is infinite. Once gravity is included we can

simply see them as extensions of the ! = 0 case discussed above for the volume modulus

26
The radial distance in the plot of the solution is given in units of the fake mass around the fake minimum

(at ' ' 5.3) of the inverted potential in the left panel of Fig. 6, that sets the natural timescale.
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Figure 6. Left panel : Inverted potential in the case ! = 0.025. The two minima become two
maxima and the bounce solution corresponds to the classical motion of a point particle that starts
close to the larger maximum and stops exactly in the lower maximum. The e↵ective mass computed
around the fake minimum in ' ' 5.3 sets the timescale for such classical motion and hence also
the natural spatial scale for the radius of the bounce solution plotted in the right panel. Right
panel: bounce solution interpolating between the fake AdS vacuum and the Minkowski vacuum of
the modified potential for ! = 0.025. The red dashed line represents the position of the Minkowski
minimum.

to arbitrary values of !. Gravity, rather than the properties of the symmetric potential

provides the attractive force to generate the boson star solutions.

4 Formation Mechanisms

In Sec. 3 we have pointed out that moduli potentials support many di↵erent types of

compact objects. However, whether they are actually formed during the history of the

Universe is a di↵erent question. The formation of compact objects typically requires that

the following two conditions are satisfied:

I) There is some initial localized overdensity;

II) The initial overdensity collapses due to the e↵ect of attractive interactions.

Typical examples include the formation of (pseudo-)solitonic objects like Q-balls or oscil-

lons and the formation of structures in the Universe. Following these two examples we can

schematically distinguish between two di↵erent classes of formation mechanisms, depend-

ing on whether gravity plays a crucial role in the realisation of the above conditions. In

this section we will mainly discuss condition I).

Condition I) can be achieved immediately after inflation, if there is a quick amplifica-

tion of the quantum fluctuations of the inflaton (or any other scalar field) that is oscillating

around the minimum of its potential [102]. As we previously reviewed in [28] there are two

main mechanisms for the amplification of the quantum fluctuations for an oscillating scalar

field, i.e. parametric resonance and tachyonic oscillations. As the timescale for these am-

plifications is typically short, gravity can be neglected during the amplification of these
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Figure 6. Left panel : Inverted potential in the case ! = 0.025. The two minima become two
maxima and the bounce solution corresponds to the classical motion of a point particle that starts
close to the larger maximum and stops exactly in the lower maximum. The e↵ective mass computed
around the fake minimum in ' ' 5.3 sets the timescale for such classical motion and hence also
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the modified potential for ! = 0.025. The red dashed line represents the position of the Minkowski
minimum.
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It is possible to study the stability of the system against perturbations by just using

the ansatz

�' = �'0 e
⌦t+ik·x

, �✓ = �✓0 e
⌦t+ik·x

. (4.22)

Plugging this ansatz in eq.s (4.20) and (4.21), working in Fourier space and using that

aH ⌧ k and that '0 varies slowly we get a quadratic equation in ⌦
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The fluctuations in eq. (4.22) grow if ⌦ is real and positive, which is ensured if the last

term in eq. (4.23) is negative, i.e. for modes that satisfy
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where kJ is the Jeans mode that can be rewritten as

k
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As in string models we expect V 00 to be positive, the existence of such an instability band

has to be checked on a case by case basis. For instance, if we assume that the potential is

dominated by the run away potential in eq. (4.14) in the region where the motion of the

field '0 is taking place, then the Jeans mode becomes

k
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a2
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
4
2 q

2

8a6
e
2'0 � V0e

�1'0 , (4.26)

that, depending on the parameters of the model can stay positive for some time (despite

the a
�6 suppression in the first term), leading to a significant growth of the fluctuations.

Let us stress that we neglected gravity in the stability analysis, but it is expected that

its inclusion would not change the conclusion, as it happens in the original spintessence

model [103]. If the spinning axion field has to provide dark matter (that could be the

case if 1 = 2), one should explicitly check that the Jeans length is such that it allows

the formation of large scale structures in agreement with observation. We leave a detailed

scan of the potentials for which the spinning axion provides a good dark matter candidate

for the future. Moreover, the growth of the fluctuations can lead to the formation of

non-topological solitons. Unlike the case of spintessence, Q-balls cannot form, due to the

absence of an unbroken U(1) vacuum. However, oscillons can be formed if the potential in

the radial direction has a minimum and it is shallower than quadratic around it.

4.2 Early matter era

In this section we point out that the requirement I) at the beginning of Section 4 is generi-

cally satisfied by string models before the beginning of BBN. The main observation relevant

to this section is that during matter domination sub-horizon matter density perturbations

modes �m,k grow linearly with the scale factor28

�m,k ⌘
�⇢m,k

h⇢i
/ a(t) ⇠ t

2/3
, k � aH . (4.27)

28
In terms of conformal time �m,k / ⌧2

. The reader should not confuse conformal time ⌧ with moduli.
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Since an oscillating modulus can be well described as pressureless dust, a growth of the

matter perturbations is expected also during the early matter domination prior to BBN29.

Density perturbations can roughly grow as much as

 =
�m,k(tdec)
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where the subscripts dec and mat denote the modulus decay time and the moment at which

the early matter domination starts. We used that during matter domination H / t
�1, that

the modulus starts oscillating when Hmat ⇠ m and that the decay rate is � ' m
3
/M

2
P for

a gravitationally coupled modulus. In the case of the volume modulus the enhancement

can then be as large as

 =
�m,k(⌧dec)

�m,k(⌧mat)
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MP
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◆4/3

= V
2
, (4.29)

since the volume modulus mass is m ' MP/V
3/2. For the blow-up moduli the maximum

enhancement is  ' V
4/3, for fibre moduli  ' V

20/9 while for KKLT is  '

⇣
MPV

|W0|

⌘4/3
.

The maximum enhancement comes independently of the value of V or W0 from requiring

that m & 100TeV, in order to avoid the cosmological moduli problem. Such bound still

gives a huge possible enhancement [118]

 max ' 1020 . (4.30)

This behaviour can be easily checked numerically by solving the linearized evolution equa-

tions for scalar perturbations in Newtonian gauge [128] derived from general relativity.

The energy density of the Universe is initially dominated by a thermal bath30, while a

scalar field is displaced from its minimum31 and stuck due to Hubble friction. In Figure 7

we show the evolution of the comoving horizon aH and of the comoving Jeans mode32

kJ = a
p
mH [111]. All the matter overdensity modes k that enter the horizon (i.e. k > aH)

and such that k < kJ, grow like the one shown in the left panel of Figure 8, where we show

the evolution of �m,k for a mode (k = 1) that enters the horizon immediately after the

beginning of the evolution. After an initial brief transient in which the Universe is going

from being radiation dominated to being matter dominated, the overdensity starts growing

linearly with the scale factor. In the right panel of Figure 8 we show the corresponding

Newtonian potential, that tends to a constant in the matter dominated era, as expected.

Finally, radiation perturbations oscillate around the constant value of �.

29
A modulus driven early matter era generically leads to a rich phenomenology, see [120–127].

30
In the numerics we chose ⇢radiation = 10

4 ⇢' � ⇢' (where ⇢' is the energy density stored in the displaced

scalar field) at the initial time.
31
We consider a quadratic potential: including corrections to the quadratic potential slightly changes

only the transient evolution of the perturbations.
32⌧̃ and k are in units of the mass of the field m.
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Figure 7. Evolution of the comoving horizon aH (black) and of the comoving Jeans mode kJ

(dashed red). The green dotted line represents the relation between k and ⌧̃ in eq. (4.37). The
horizontal and vertical lines correspond to kmat and ⌧̃mat respectively.
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Figure 8. Left panel : Overdensity for the mode k = 1 normalized by the scale factor �m,k/a(⌧̃),
in log scale. Since during matter domination the matter overdensity increases as the scale factor,
the curve tends to a constant value. We use arbitrary units on the y-axis. Right panel : Newtonian
potential for the mode k = 1. The initial value is normalized to �k = �1. As expected during
matter domination the Newtonian potential tends to a constant value.

It is possible to get an analytical solution for modes that are still superhorizon while

the Universe is already matter dominated33. The initial conditions needed to solve the

33
In the numerics we adapted the discussion below to take into account that the Universe is initially

radiation dominated, hence w = 1/3.
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Properties of Moduli Stars
Particle State mass Star mass Star radius Enhancement

LVS volume modulus MP/V
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V
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V
2

Table 2. Summary of the compact configurations with the scalings of their associated particle and
star mass scalings, radii, and their respective enhancement factors.

Figure 9. Summary of expected mass ranges and radii for typically considered values of the overall
volume and flux parameter.

early matter dominated era (up to factors of order 1020) can lead to the production of a

stochastic spectrum of GWs [118]. Furthermore, the possible formation of boson stars and

even of primordial black holes could leave a distinctive signal in the GW spectrum. Other

potential signatures have been studied in the past [99].
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stochastic spectrum of GWs [118]. Furthermore, the possible formation of boson stars and

even of primordial black holes could leave a distinctive signal in the GW spectrum. Other

potential signatures have been studied in the past [99].
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Gravity is attractive

ΩGW ≃ #4Analytical estimates show that 

if Λ ≃ Mp potentially
large GW production

[S. Antusch, F. Cefalà, 2017]

Larger compactness: % ≃ ( Λ
Mp )

2
Larger GW production 

from collisions

BH production from 
collisions

[T. Helfer, E. Lim, Garcia, Amin, 2018]

Possible production of light Primordial Black Holes.

Additional attractive force Easier to have 
stable solutions?
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Gravity is attractive
Light Primordial Black Holes??

Provide initial conditions for Hawking genesis.
[O. Lennon, J. March-Russell, R. Petrossian-Byrne, H. Tillim, 2017]

Longer lifetime: τosc ≃ 103 × m−1

τBH

τosc
≃ (

Mp

m )
2

≲ 1026

Matter domination: LPBHs could cluster

Enhanced GW production 
from collisions

[A. Dolgov, D. Ejlli, 2011]

more dynamics and 
GW production?

Hawking radiation is democratic constraints on string 
model building?

[M. Amin, P. Mocz, 2019]

Effects of Gravity 2:



e.g. Effects of gravity
Figure 5: T-model potential: (Left panel) Dynamical evolution of the central amplitude of the
oscillaton for a configuration with total initial massM = 2.9M2

p/m and typical scale of the potential
⇤/Mp = 0.2. The black curve correspond to the evolution that takes into account the e↵ects
of gravity, while the blue curve is the stable evolution in the absence of gravity. The spike at
⌧ ' 19 ⇥ 1/m in the black curve is caused by the collapse to a black hole as the puncture gauge
evolves, and is thus somewhat unphysical. The convergence test for this parameter point is shown
in Fig. 2. (Right panel) Dynamical evolution of the metric conformal factor � for ⇤/Mp = 0.2 with
initial total mass M = 2.9M2

p/m. The convergence test for this parameter point is shown in Fig. 2.
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Figure 6: T-model potential: The black curve corresponds to the dynamical evolution of the
central amplitude taking into account the e↵ects of gravity, while the blue curve corresponds to
the evolution of the same initial configuration neglecting gravity e↵ects. The total initial mass is
M = 2.6M2

p/m and the typical scale of the potential is ⇤/Mp = 0.2. Both solutions are stable -
the latter due only to self-interactions - but the former has a larger amplitude of oscillations that
could give rise to a larger stochastic background of GWs, as explained in Sec. 1 (see Eq. (1.3)).

amplitude of two RSSs with the same initial total mass M = 2.6M2
p /m when gravity is

taken into account (black line) and when gravity are neglected (blue line), for ⇤/Mp =

0.2. Upon adding the e↵ects of gravity the equilibrium amplitude is larger: this could be
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Gravitational wave production

f0 ≥ ( m
TeV)

5/6
Hz

Lisa

Ligo



e.g. Stable  
oscillatons



Starobinsky / Fibre
moduli.  Black hole 
collapse.



Summary Results

• Blow-up: Gravity effects negligible

• KKLT: Metastable, larger amplitudes

• Fibre/attractors: Higher amplitudes, Black 

hole collapse



Conclusions 

• Post-inflation pre-BBN string cosmology interesting

• Rich spectrum of compact objects (stringy oscillons, 
gravitino, modulini, moduli, oscillatons, axion stars)

• Gravitational waves spectrum (‘hear the shape of the 
extra dimensions?’)

• High frequency GWs?
See Caprini’s talk
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