Moduli Stars and Bubbles of False Vacuum*

Fernando Quevedo
ICTP + Cambridge
String Phenomenology
CERN June 2019

Based on Articles

S. Antusch, F. Cefala, S. Krippendorf, F. Muia, S. Orani and FQ: "Oscillons from String Moduli,"
 JHEP {1801} (2018) 083, [arXiv:1708.08922.

LatticeEasy

S. Krippendorf, F. Muia and FQ,

```
"Moduli Stars,"

JHEP {1808} (2018) 070, [arXiv:1806.04690].
```

F. Muia, M. Cicoli, K. Clough, F. Pedro, FQ, G. Vacca
 "The Fate of Dense Scalar Stars,"
 [arXiv:1906.09346].

GRChombo

^{*} See also talk by Francesco Muia

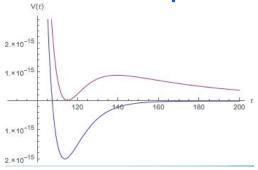
Strings and Moduli

- String theory predicts (6 or 7) extra dimensions
- Major problem: Fixing size and shape of extra dimensions (moduli)

Progress to fix all moduli: only this century (GKP, KKLT, LVS,...)

In some cases the 4D space = de Sitter space (Λ>0)

Moduli Stabilisation in IIB


Moduli S,
$$T_i$$
, U_a $V_F = e^K \left(K_{M\overline{N}}^{-1} D_M W \overline{D}_{\overline{M}} \overline{W} - 3|W|^2 \right)$

$$W_{ ext{tree}} = W_{ ext{flux}}(U,S)$$
 $K_{iar{\jmath}}^{-1}K_iK_{ar{\jmath}} = 3$ No-scale
$$V_F = e^K\left(K_{aar{b}}^{-1}D_aWD_{ar{b}}W\right) \geq 0$$

Fix S,U but T arbitrary

Quantum corrections

$$\delta V \propto W_0^2 \delta K + W_0 \delta W$$

*Warning: Runaway ≠ Quintessence!

Three options:
$$W_0 \gg \delta W$$
 $\delta K \gg \delta W$ Runaway: Dine-Seiberg problem

$$W_0 \sim \delta W = W_{
m np}.$$
 Fix T-modulus: KKLT

$$\delta K \sim W_0 \delta W_{\odot}$$
 $\delta K \sim 1/\mathcal{V} ext{ and } \delta W \sim e^{-a au}$ Fix T-moduli: LVS

$$\mathcal{V} \sim e^{a_s \tau_s} \gg 1 \text{ with } \tau_s \sim \frac{\xi^{2/3}}{g_s}.$$

de Sitter

Anti D3 brane

• D+F terms in EFT or T-branes

- Complex structure/Dilaton uplift (D_UW≠ 0, D_SW≠ 0)
- Non critical strings, negative curvature compactifications, Kahler uplift, nonperturbative effects on D3 branes, ...

Challenges to KKLT, LVS,...

See talks: McCallister, Hebecker, van Riet, Sethi, Grana, Blumenhagen, Tomasiello,...

- Antibranes, fluxes and non-perturbative effects?
- Tuning $W_0 << 1?$ in KKLT $(W_0 = O(1))$ in LVS
- Higher order corrections?
- T-branes in a controlled region?
- More explicit compact CY (realistic) models of dS
- Populating the landscape (large # of U moduli + vacuum transitions)

See: Cicoli, de Alwis, Maharana, Muia, FQ arXiv:1808.08967

Swampland and Bootstrap

J. Conlon, FQ 1811.06276

e.g. LVS/CFT

Mode	Spin	Parity	Conformal dimension
$T_{\mu\nu}$	2	+	3
a	0	-	3
Φ	0	+	$8.038 = \frac{3}{2} \left(1 + \sqrt{19} \right)$

All other conformal dimensions $O(V^a)$

$$\mathcal{L}_{(\delta\Phi)^n} = (-1)^{n-1} \lambda^n (n-1) \left(-3 \frac{M_P^2}{R_{AdS}^2} \right) \frac{1}{n!} \left(\frac{\delta\Phi}{M_P} \right)^n \left(1 + \mathcal{O}\left(\frac{1}{\lambda \langle \Phi \rangle} \right) \right),$$

$$\mathcal{L}_{(\delta\Phi)^{n-2}aa} = \left(-\sqrt{\frac{8}{3}} \right)^{(n-2)} \frac{1}{2(n-2)!} \left(\frac{\delta\Phi}{M_P} \right)^{n-2} \partial_{\mu} a \partial^{\mu} a,$$

* LVS Satisfies strong and weak AdS distance conjectures (Palti)

Further Conjectures? Standard Model?

- SUSY at KK scale?
- Quintessence?

Partly full Partly empty

String Cosmology

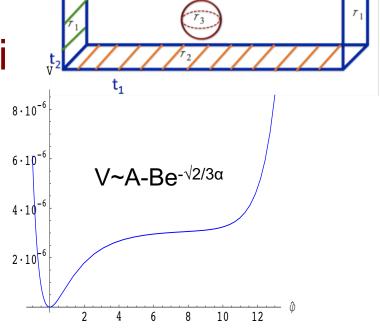
- Epochs: Pre-inflation, inflation, post-inflation (pre-BBN)
- Chiral spectrum implies N=0,1 in 4D (work with N=1)
- Strings relevant in postinflation? (yes: moduli).

"Generically": If EFT is supersymmetric then the moduli survive at low energies until susy breaks:

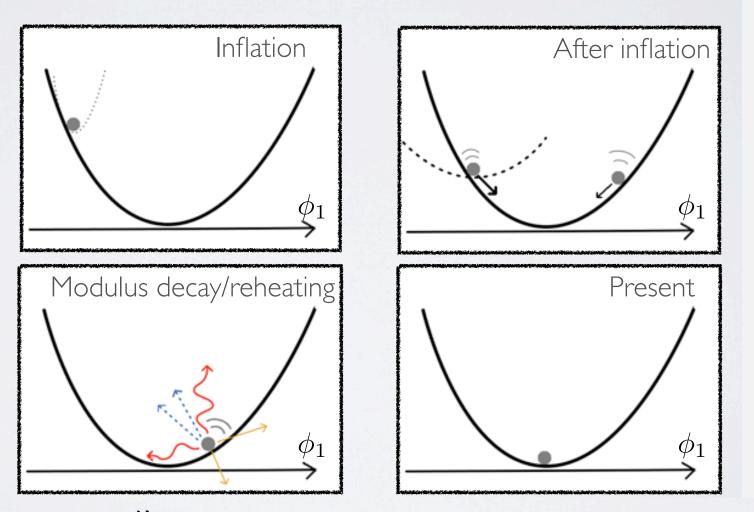
mass_{moduli}≈ m_{gravitino}.

(but interesting exceptions!)

Kahler moduli


Overall volume

Blow-up



• Fibre moduli

Post Inflation

Moduli Domination

$$\Gamma_{\phi} \sim rac{1}{8\pi} rac{m_{\phi}^3}{M_{\mathrm{Pl}}^2}$$

T > O(1 MeV), so $m_{\phi} \gtrsim 3 \cdot 10^4 \text{ GeV}$

Coughlan et al 1983, Banks et al, de Carlos et al 1993

Oscillons* from String Moduli

Antusch, Cefalá, Krippendorf, Muia, Orani, FQ arXiv:1708.08922

*localised, long-lived, non-linear excitations of the scalar fields.

Generalities

Exponentially growing solutions:

$$\ddot{\phi}(t) + 3H\dot{\phi}(t) + V'(\phi(t)) = 0$$

$$\delta\ddot{\phi}_k + 3H\delta\dot{\phi}_k + \left(\frac{k^2}{a^2(t)} + V''(\phi(t))\right)\delta\phi_k = 0$$

$$V(\phi)$$

$$\phi_{\text{(final)}} \phi_{\text{(initial)}}$$

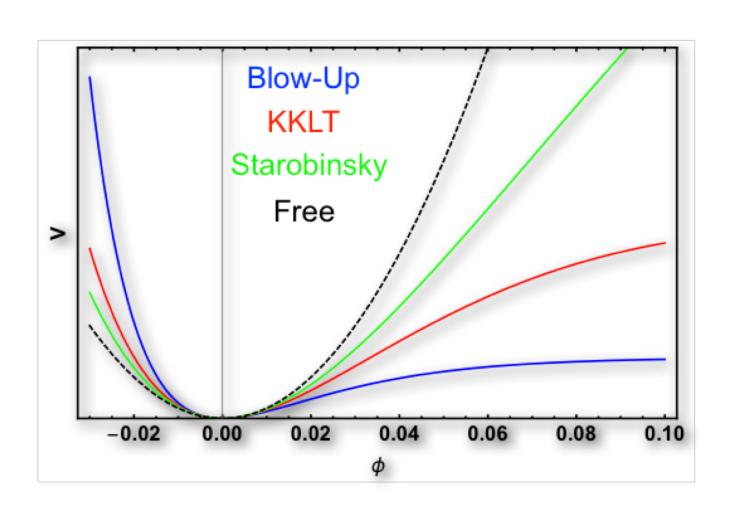
- Conditions for unstable solutions:
 - i. parametric resonance
 - ii. tachyonic preheating (modulus displaced in I)

$$k^2/a^2 + \partial^2 V/\partial \phi^2 < 0$$

iii. tachyonic oscillations (oscillations reach I)

$$k_p \sim \sqrt{\partial^2 V/\partial \phi^2}|_{\min} \equiv m$$

Necessary Conditions for Oscillons production


- Quantum fluctuations of the field grow as it oscillates around the minimum.
- The growth of fluctuations is sufficiently strong for non-linear interactions to become important.
- The potential is shallower than quadratic away from the minimum in some field space region relevant for the dynamics of the field.

$$V = \frac{m^2}{2}\phi^2 - \frac{\lambda}{4!}\phi^4 + \dots$$

Attractive 'force' for $\lambda > 0$

Moduli Potentials

Lattice simulations*

LatticeEasy: to analyse strong growth of perturbations.

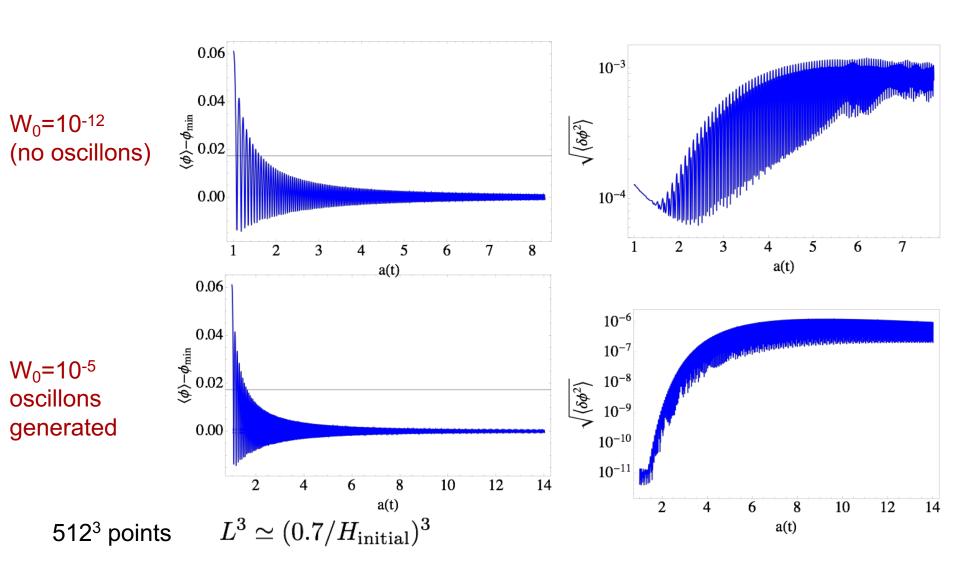
$$\ddot{\phi} + 3H\dot{\phi} - \frac{1}{a^2}\nabla^2\phi + \frac{\partial V}{\partial\phi} = 0$$
 $H^2 = \frac{1}{3M_{\rm Pl}^2}\left(V + \frac{1}{2}\dot{\phi}^2 + \frac{1}{2a^2}|\nabla\phi|^2\right)$

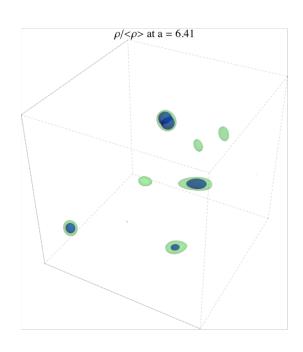
Modified version to calculate also metric perturbations:

$$ds^{2} = -dt^{2} + a^{2}(t)(\delta_{ij} + h_{ij})dx^{i}dx^{j}$$

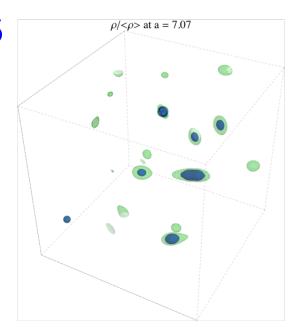
$$\ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{1}{a^{2}}\nabla^{2}h_{ij} = \frac{2}{M_{\mathrm{Pl}}^{2}}\Pi_{ij}^{\mathrm{TT}} \qquad \Pi_{ij}^{\mathrm{TT}} = \frac{1}{a^{2}}\left[\partial_{i}\phi\partial_{j}\phi\right]^{\mathrm{TT}}$$

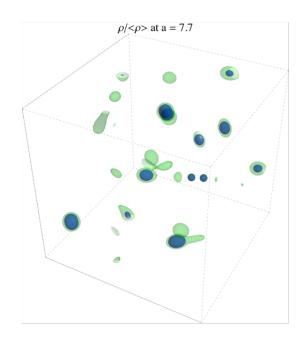
$$\Omega_{\mathrm{GW}}(k) = \frac{1}{\rho_{\mathrm{c}}}k\frac{d\rho_{\mathrm{GW}}}{dk} \qquad \rho_{\mathrm{GW}}(t) = \frac{M_{\mathrm{Pl}}^{2}}{4}\left\langle\dot{h}_{ij}(\mathbf{x}, t)\dot{h}_{ij}(\mathbf{x}, t)\right\rangle_{\mathrm{V}}$$

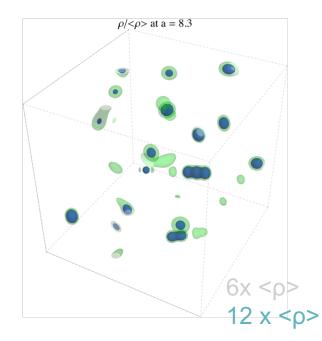

KKLT Oscillons


$$V/M_{\rm Pl}^4 = \frac{e^{K_{\rm cs}}}{6\tau^2} \left(aA^2(3+a\tau)e^{-2a\tau} - 3aAe^{-a\tau}W_0 \right) .$$

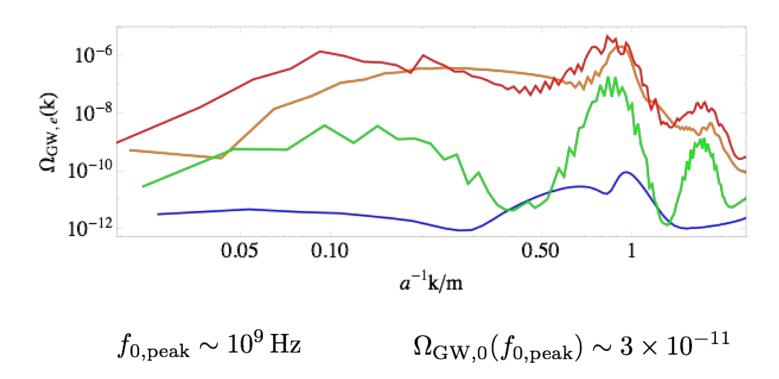
$$\phi/M_{\rm Pl} = \frac{\sqrt{3}}{2} \log \left(T + \bar{T}\right).$$
 $10^{-12} \le W_0 \le 10^{-5}, \quad 1 \le A \le 10, \quad 1 \le a \le 2\pi.$

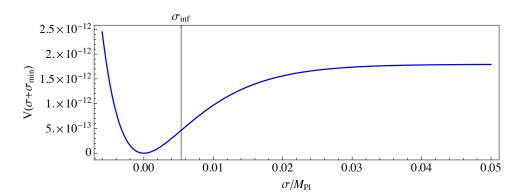

KKLT results

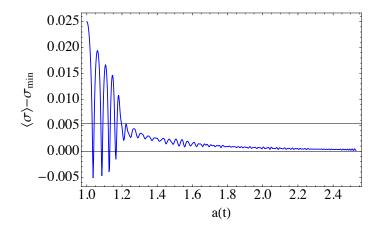


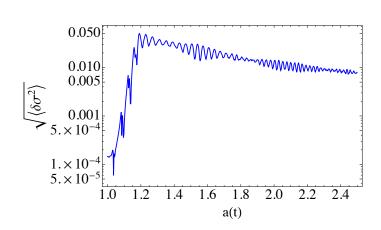


Snapshots

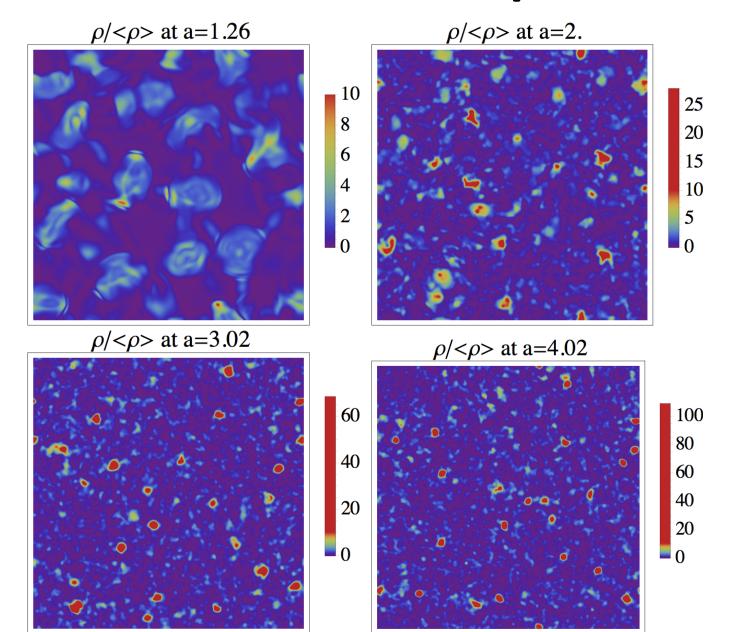


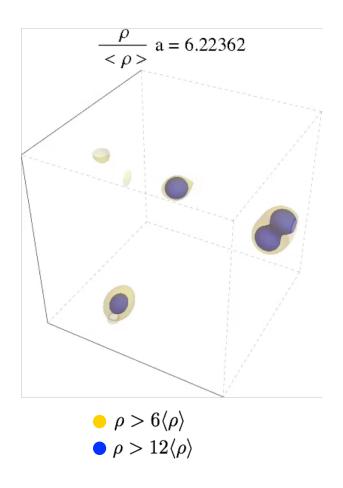

GW spectrum: KKLT

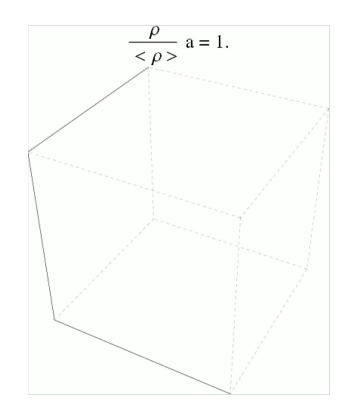



^{*}Overall scaling can lower frequency but also lower the amplitude

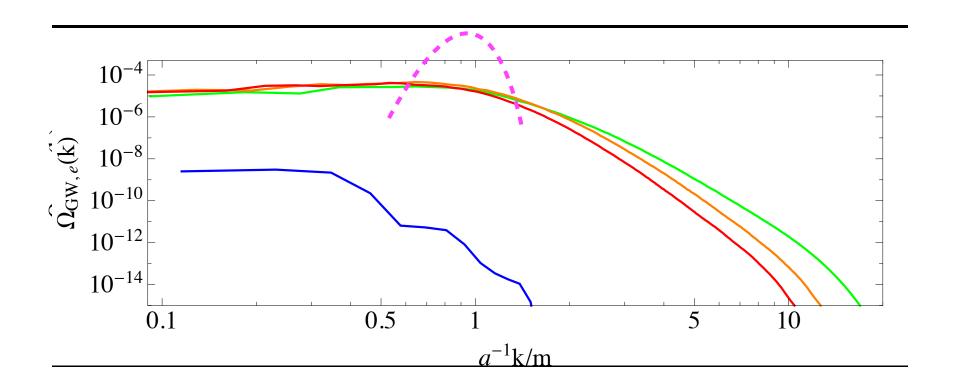
Blow-up Potential in LVS


$$V \sim V_0 \left(1 - \kappa(\sigma) e^{-\alpha \sigma^{4/3}} \right)^2$$
,





Oscillons from Blow-up mode



3D lattice simulations (Blow-up vs KKLT)

Gravitational Waves

$$f_0 \sim 10^8 \, \mathrm{Hz} - 10^9 \, \mathrm{Hz}$$

$$f_0 \sim 10^8 \,\mathrm{Hz} - 10^9 \,\mathrm{Hz}$$
, with $\Omega_{\mathrm{GW},0} \sim 10^{-10} - 5 \times 10^{-10}$.

*No oscillons for volume nor fibre moduli but also no overshooting!

Moduli Stars

Boson and Fermion Stars

Fermion stars: Gravity vs fermion pressure

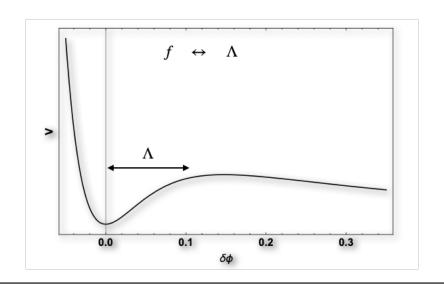
$$GM^2/R \sim N^{4/3}/R$$
 , $N=M/m$ $M_{
m max} \sim {M_{
m P}^3 \over m_f^2}$ $R_{
m min} \sim {M_{
m P} \over m_f^2}.$ (e.g. $M \sim M_{\odot}$ for $m \sim 1~{
m GeV}$ neutron star)

Boson stars: Gravitational BEC

Heisenberg R>1/m
$$$R_{\rm min}\sim \frac{1}{m}$$
 . $$M_{\rm max}\sim \frac{M_{\rm P}^2}{m}$. Schwarschild R ~ 2GM 2

But adding interactions $M_c \sim M_p^3/m^2$

$$M_c \sim M_p^3/m^2$$


Classification of Scalar Stars

Scalar	G = 0	G = 1	
Complex	$Q ext{-}Balls$	Mini-Boson Stars	Boson Stars
	Global $U(1)$	weak self-interactions	strong self-interactions
Real	Oscillons attractive self-interactions	Oscillatons (e.g. Axion and Moduli stars)	

Regimes

Dilute

Dense

if $\Lambda/M_p \sim \mathcal{O}(0.1-1)$ gravity is non negligible

Are there stringy boson/fermion stars?

Candidates:

Long-lived (stable) gravitationally coupled fields:

- hidden sector fermions/bosons,
- moduli,
- modulini,
- gravitini

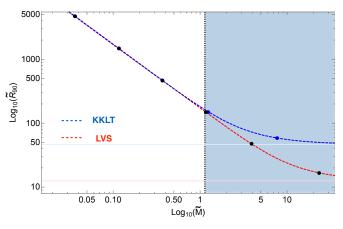
Stringy Fermion Stars

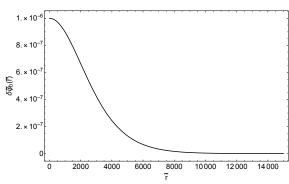
Gravitino and modulini:

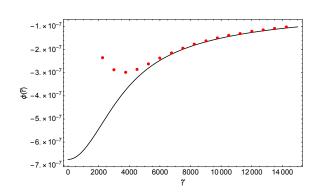
$$M_{\rm max} \sim \frac{M_{\rm P}^3}{m_f^2}$$
 $m_f = m_{3/2} = \frac{W_0}{\mathcal{V}}$

Validity of EFT and Cosmological moduli problem: $10^3 \le \mathcal{V} \le 10^9$

$$1 \,\mathrm{g} \lesssim M \lesssim 10^{15} \,\mathrm{g}$$
, $10^{-27} \,\mathrm{cm} \lesssim R \lesssim 10^{-15} \,\mathrm{cm}$


Recall: $M_{\odot} \simeq 2 \times 10^{33} \, \mathrm{g} \simeq 10^{57} \, \mathrm{GeV}$. $1 \, \mathrm{GeV} \simeq 1.8 \times 10^{-24} \, \mathrm{g}$


e.g. Volume modulus stars


$$S = \int d^4x \sqrt{-g} \left[-\frac{g^{\mu\nu}}{2} \partial_{\mu}\varphi \partial_{\nu}\varphi - V(\varphi) \right]$$

$$\varphi(r,t) = \varphi_0(r)\cos(\omega t) , \qquad ds^2 = -(1+2\phi)dt^2 + (1-2\phi)dr^2 + r^2d\Omega^2 ,$$

$$\tilde{\varphi}_0''(\tilde{r}) + \frac{2}{\tilde{r}}\tilde{\varphi}_0'(\tilde{r}) = 2\left(\phi(\tilde{r}) - \epsilon\right)\tilde{\varphi}_0(\tilde{r}) ,$$

$$\phi''(\tilde{r}) + \frac{2}{\tilde{r}}\phi'(\tilde{r}) = \frac{\tilde{\varphi}_0^2(\tilde{r})}{4} ,$$

$$M(r) = \left(\frac{\Lambda^2}{m}\right) \tilde{M}(\tilde{r}) , \qquad \tilde{M}(\tilde{r}) = 4\pi \int_0^{\tilde{r}} d\tilde{r}' \, \tilde{r}'^2 \tilde{\rho}(\tilde{r}') .$$

Q-Balls*

...Coleman (1985)...

Complex scalar, U(1) global symmetry

$$\mathcal{L} = \int d^3x \left(\frac{1}{2} \partial^{\mu} \Phi \partial_{\mu} \Phi^* - U(|\Phi|) \right)$$

U minimum at Φ=0

Noether current and conserved charge

$$J_{\mu} = \frac{1}{2i} \left(\Phi^* \partial_{\mu} \Phi - \Phi \partial_{\mu} \Phi^* \right); \qquad Q = \int d^3 x J^0 = \frac{1}{2i} \int d^3 x \left(\Phi^* \dot{\Phi} - h.c. \right)$$

Extrema of energy

$$E_{\omega} = \int d^3x \left(\frac{1}{2} |\dot{\Phi}|^2 + \frac{1}{2} |\nabla \Phi|^2 + U(|\Phi|) \right) + \omega \left(Q - \frac{1}{2i} \int d^3x \left(\Phi^* \dot{\Phi} - h.c. \right) \right)$$

$$= \int d^3x \left(\frac{1}{2} |\dot{\Phi} - i\omega \Phi|^2 + \frac{1}{2} |\nabla \Phi|^2 + \hat{U}(|\Phi|) \right) + \omega Q \qquad \hat{U}_{\omega}(|\Phi|) = U(|\Phi|) - \frac{1}{2} \omega^2 |\Phi|^2.$$

$$\Phi(x, t) = \varphi(x) e^{i\omega t}$$

Thin wall approximation (large Q)

$$E = Q\sqrt{\frac{2U(\varphi_0)}{\varphi_0^2}}$$

Q-balls in string theory?*

Global symmetries?

- 1. From (non) anomalous U(1)
- 2. From Peccei-Quinn symmetries

*Open strings:
$$U_{\mathrm{D}} = g^2 \left(\xi - \sum_i q_i |\Phi_i|^2 \right)^2$$

$$U_{\mathrm{soft}} = \sum_i m_i^2 |\Phi_i|^2 + \left(\sum_{ijk} A_{ijk} \, \Phi_i \Phi_j \Phi_k + \sum_{ij} B_{ij} \, \Phi_i \Phi_j + h.c. \right)$$

$$E^2 = \frac{2U}{\sum_i q_i |\Phi_i|^2} = \frac{2(U_D + U_{soft})}{\sum_i q_i |\Phi_i|^2}$$

MInimum for novanishing: $\rho^2 = \sum_i q_i \rho_i^2 = \sum_i q_i |\Phi_i|^2$

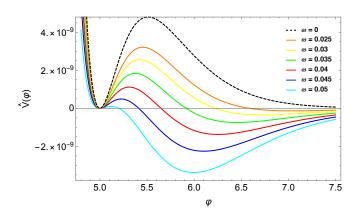
e.g. Kusenko (1997) for MSSM

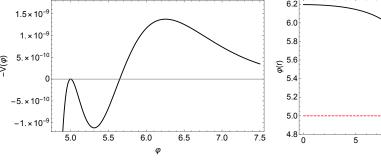
Closed string sector*

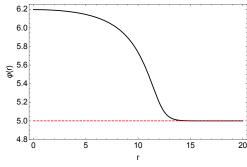
 Massive moduli + axion (generalised axion stars, m> 1 TeV)

• Axion much lighter (Ultra-light axion) $V_{\psi} = \frac{g_s}{2\pi} a_b A_b \frac{e^{-a_b \tau_b}}{\tau_b^2} \left[1 + \cos\left(a_b \psi_b\right)\right],$

PQ symmetry almost exact (PQ-balls?)

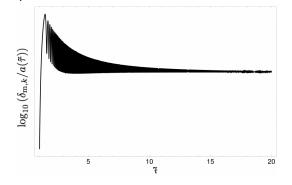

PQ Balls?*


$$S = \int d^4x \, \mathcal{L} = \int d^4x \, \left[-f(\tau) \left[\partial_\mu \tau \partial^\mu \tau + \partial_\mu \theta \partial^\mu \theta \right] - V(\tau) \right] \, d^4x \, \mathcal{L}$$


$$\dot{\theta} = \omega$$
, $\nabla \theta = 0$. $\hat{V}(\tau) = V(\tau) - \omega^2 f(\tau)$

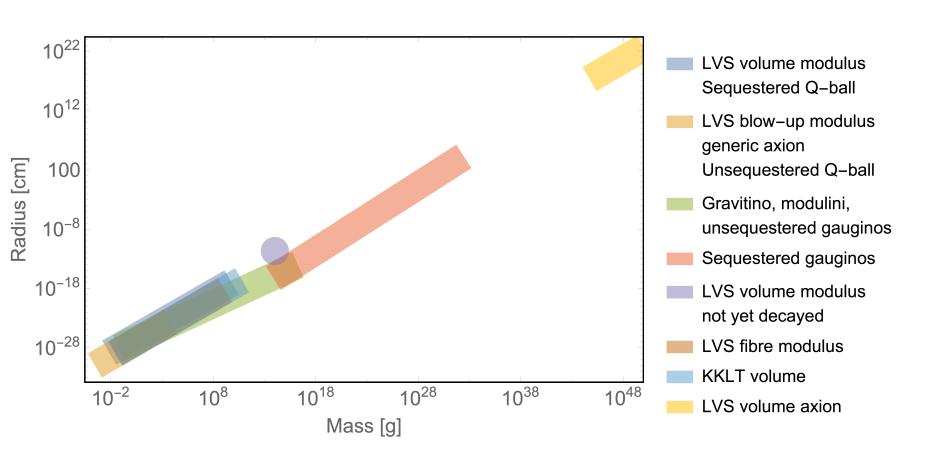
$$\hat{V}(\tau) = V(\tau) - \omega^2 f(\tau)$$

$$Q = \omega \int d^3x f(\tau) \propto \int 4\pi r^2 dr \frac{\omega}{r^2} \to \infty$$
.



Formation Mechanisms

- I) There is some initial localized overdensity;
- II) The initial overdensity collapses due to the effect of attractive interactions.


$$\begin{split} \delta_{\rm m,k} &\equiv \frac{\delta \rho_{\rm m,k}}{\langle \rho \rangle} \propto a(t) \sim t^{2/3} \,, \qquad k \gg aH \,. \\ \Psi &= \frac{\delta_{\rm m,k}(t_{\rm dec})}{\delta_{\rm m,k}(t_{\rm mat})} \approx \left(\frac{t_{\rm dec}}{t_{\rm mat}}\right)^{2/3} \approx \left(\frac{H_{\rm mat}}{H_{\rm dec}}\right)^{2/3} \approx \left(\frac{m}{\Gamma}\right)^{2/3} \approx \left(\frac{M_{\rm P}}{m}\right)^{4/3} \,, \\ \Psi &= \left. \frac{\delta_{\rm m,k}(\tau_{\rm dec})}{\delta_{\rm m,k}(\tau_{\rm mat})} \right|_{\mathcal{V}} \approx \left(\frac{M_{\rm P}}{M_{\rm P}/\mathcal{V}^{3/2}}\right)^{4/3} = \mathcal{V}^2 \,, \qquad \text{Enhacement factor!} \end{split}$$

Properties of Moduli Stars

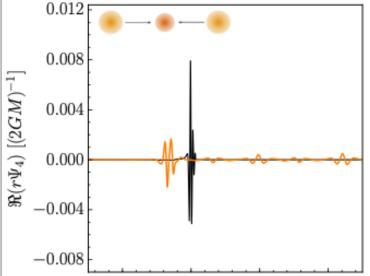
Particle	State mass	Star mass	Star radius	Enhancement
LVS volume modulus	$M_{ m P}/{\cal V}^{3/2}$	$M_{ m P} {\cal V}^{3/2}$	$l_{ m P} \mathcal{V}^{3/2}$	\mathcal{V}^2
LVS blow-up modulus Generic axion	$M_{ m P}/{\cal V}$	$M_{ m P} {\cal V}$	$l_{ m P} \mathcal{V}^{5/3}$	$\mathcal{V}^{4/3}$
LVS fibre moduli	$M_{ m P}/{\cal V}^{5/3}$	$M_{ m P} {\cal V}^{5/3}$	$l_{ m P} \mathcal{V}^{5/3}$	$\mathcal{V}^{20/9}$
LVS volume axion	$M_{ m P}e^{-lpha \mathcal{V}^{2/3}}$	$M_{ m P}e^{lpha \mathcal{V}^{2/3}}$	$l_{\mathrm{P}}e^{lpha\mathcal{V}^{2/3}}$	$e^{4/3\alpha\mathcal{V}^{2/3}}$
KKLT volume modulus	$M_{ m P} W_0 /{\cal V}$	$M_{ m P} W_0 ^{-1}\mathcal{V}$	$l_{\mathrm{P}} W_0 ^{-1}\mathcal{V}$	$(W_0 ^{-1}\mathcal{V})^{4/3}$
Gravitino, modulini, unsequestered gauginos	$M_{ m P} W_0 /{\cal V}$	$M_{ m P} \mathcal{V}^2/ W_0 ^2$	$l_{\rm P} \mathcal{V}^2 / W_0 ^2$	$\mathcal{V}^{4/3}/ W_0 ^{4/3}$
Sequestered gauginos	$M_{ m P}/{\cal V}^2$	$M_{ m P} {\cal V}^4$	$l_{ m P} \mathcal{V}^4$	$\mathcal{V}^{8/3}$
Unsequestered Q-balls	$M_{ m P}/{\cal V}$	$M_{ m P} {\cal V}$	$l_{ m P} {\cal V}$	$\mathcal{V}^{4/3}$
Sequestered Q-balls	$M_{ m P}/{\cal V}^{3/2}$	$M_{ m P} {\cal V}^{3/2}$	$l_{ m P} \mathcal{V}^{3/2}$	\mathcal{V}^2

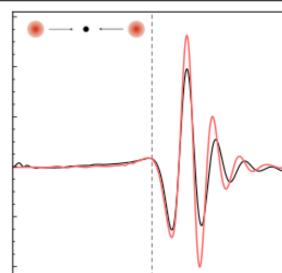
Size and Mass of Moduli Stars

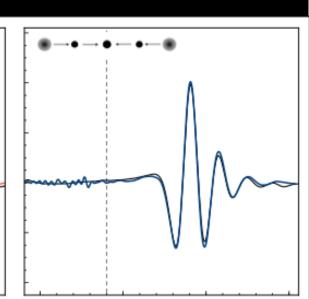
Effects of Gravity:

Additional attractive force

Easier to have stable solutions?


Larger compactness:


Larger GW production


from collisions

[T. Helfer, E. Lim, Garcia, Amin, 2018]

BH production from collisions

Effects of Gravity:

Additional attractive force

Easier to have stable solutions?

■ Larger compactness: $C \simeq \left(\frac{\Lambda}{M_p}\right)$ [T. Helfer, E. Lim, Garcia, Amin, 2018]

Larger GW production from collisions

BH production from collisions

Analytical estimates show that

 $\Omega_{GW} \simeq \mathsf{A}^4$

if $\Lambda \simeq M_p$ potentially large GW production

Possible production of light Primordial Black Holes.

Effects of Gravity 2:

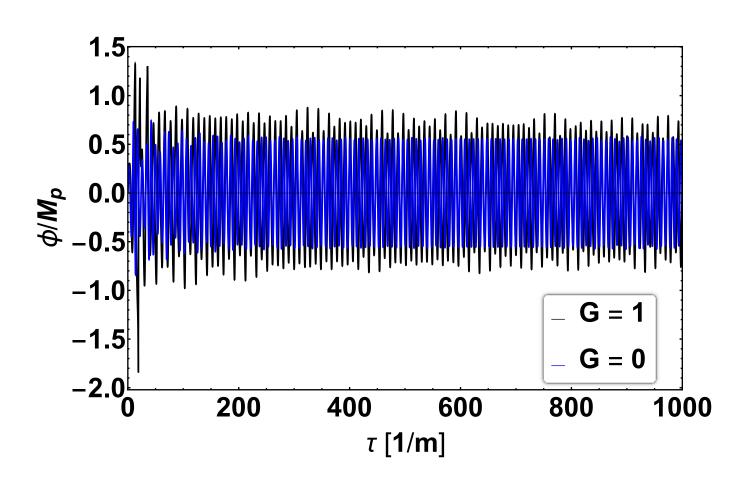
Light Primordial Black Holes??

- Provide initial conditions for Hawking genesis. [O. Lennon, J. March-Russell, R. Petrossian-Byrne, H. Tillim, 2017]
- Hawking radiation is democratic -

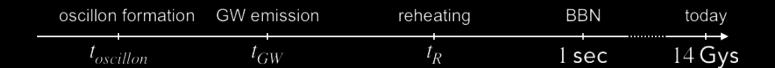
constraints on string model building?

 $\tau_{osc} \simeq 10^3 \times m^{-1}$ Longer lifetime:

$$\frac{\tau_{BH}}{\tau_{osc}} \simeq \left(\frac{M_p}{m}\right)^2 \lesssim 10^{26} \quad \longrightarrow \quad \text{more dynamics and GW production?}$$


[M. Amin, P. Mocz, 2019]

Matter domination: LPBHs could cluster


[A. Dolgov, D. Ejlli, 2011]

Enhanced GW production from collisions

e.g. Effects of gravity

Gravitational wave production

$$f_0 \ge \left(\frac{m}{\text{TeV}}\right)^{5/6} \text{Hz}$$

$$m \simeq 400\,\mathrm{GeV}$$

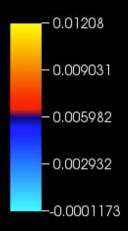
$$f_0 \ge 10^{-2} \, \text{Hz}$$

Lisa

$$m \simeq 10^9 \, \text{GeV}$$

$$f_0 \ge 10^2 \, \text{Hz}$$

Ligo


$$m \simeq 10^{12} \, \text{GeV}$$

$$f_0 \ge 10^6 \, {\rm Hz}$$

$$m \simeq 10^{15}\,\mathrm{GeV}$$

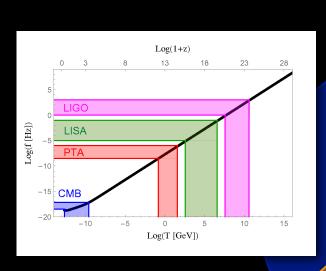
$$f_0 \ge 10^9 \, \text{Hz}$$

e.g. Stable oscillatons

Starobinsky / Fibre moduli. Black hole collapse.

Summary Results

- Blow-up: Gravity effects negligible
- KKLT: Metastable, larger amplitudes
- Fibre/attractors: Higher amplitudes, Black hole collapse


Conclusions

- Post-inflation pre-BBN string cosmology interesting
- Rich spectrum of compact objects (stringy oscillons, gravitino, modulini, moduli, oscillatons, axion stars)
- Gravitational waves spectrum ('hear the shape of the extra dimensions?')

See Caprini's talk

High frequency GWs?

Challenges and Opportunities of High Frequency Gravitational Waves Detection

14-18 October 2019

Organizers: Valerie Domcke Francesco Muia Fernando Quevedo Jessica Steinlechner

Sebastian Steinlechner

THEORY

EXPERIMENT

NUMERICS