String theory compactifications with sources

Alessandro Tomasiello

String Phenomenology 2019, CERN

Introduction

Internal D-brane or O-plane sources important in string theory compactifications

- in AdS/CFT they realize flavor symmetries
- O-planes necessary for de Sitter and for Minkowski beyond CY

Introduction

Internal D-brane or O-plane sources important in string theory compactifications

- in AdS/CFT they realize flavor symmetries
- O-planes necessary for de Sitter and for Minkowski beyond CY
- it has been hard to find examples; often people have resorted to 'smearing'

[Acharya, Benini, Valandro '05, Graña, Minasian, Petrini, AT'o6,
Caviezel, Koerber, Körs, Lüst, Wrase, Zagermann 'o8, Andriot, Goi, Minasian, Petrini 'ıo...]

However, O-planes should sit at fixed loci of involutions
they shouldn't be smeared by definition.

- They create singularities where supergravity breaks down

- supergravity artifacts: they should be resolved in appropriate duality frame
- They create singularities where supergravity breaks down
backreaction
on flat space:

$$
d s_{10}^{2}=\underset{\text { harmonic function in } \mathbb{R}_{\perp}^{9-p}}{H^{0, \ldots, p}}
$$

$$
\begin{gathered}
e^{\phi}=g_{s} H^{(3-p) / 4} \\
d s_{\perp}^{2}=d r^{2}+r^{2} d s_{S^{8-p}}^{2}
\end{gathered}
$$

- supergravity artifacts: they should be resolved in appropriate duality frame

D-branes
O-planes
$\left[\mathrm{O} p_{-}\right.$: tension=charge $\left.=-2^{p-5}\right]$

This talk:

Recent progress in
finding compactifications with sources

- first steps in applying it to de Sitter

AdS solutions with sources

- Rarely: near-horizon limits
from brane intersections

D3 dissolve; no source after near-horizon

$$
\longrightarrow \mathrm{AdS}_{5} \times S^{5}
$$

AdS solutions with sources

- Rarely: near-horizon limits

from brane intersections

D3 dissolve; no source after near-horizon
$\longrightarrow \mathrm{AdS}_{5} \times S^{5}$

[Youm '99, Brandhuber, Oz '99]

AdS solutions with sources

- Rarely: near-horizon limits

from brane intersections

[Youm '99, Brandhuber, $\mathrm{Oz}^{\prime}{ }_{99}$]

- But brane intersections for more complicated configurations is not known...

- More successful: systematic exploration of BPS conditions

- old methods: G-structures, pure spinors

```
                                    first wave around 'O4
                                    eg. [Gauntlett, Martelli, Sparks, Waldram '04]
                                    [Graña, Minasian, Petrini, AT'O5]
eg. [Apruzzi, Fazzi, Rosa, AT 'ı3]
[Passias, Solard, AT '17; Passias, Prins, AT ' 18 8]
```

- more recent extensions:
pure spinors in odd dimensions, extended susy
- once a large class is obtained: explore boundary conditions for sources

- More successful: systematic exploration of BPS conditions

- old methods: G-structures, pure spinors

first wave around 'O4
eg. [Gauntlett, Martelli, Sparks, Waldram '04]
[Graña, Minasian, Petrini, AT 'os]

- more recent extensions:
pure spinors in odd dimensions, extended susy
eg. [Apruzzi, Fazzi, Rosa, AT 'ı3]
[Passias, Solard, AT '17; Passias, Prins, AT ' 18 8]
- once a large class is obtained: explore boundary conditions for sources
- some recent solution classes with possible sources

- More successful: systematic exploration of BPS conditions

- old methods: G-structures, pure spinors

first wave around 'o4
eg. [Gauntlett, Martelli, Sparks, Waldram '04]
[Graña, Minasian, Petrini, AT '05]

- more recent extensions:
pure spinors in odd dimensions, extended susy
eg. [Apruzzi, Fazzi, Rosa, AT 'ı3]
[Passias, Solard, AT'17; Passias, Prins, AT ' 18 8]
- once a large class is obtained: explore boundary conditions for sources
- some recent solution classes with possible sources
- AdS_{7} in IIA: $\quad S^{2} \rightarrow I$
sources: D8, D6, O8, O6
[Apruzzi, Fazzi, Rosa, AT 'ı3 Apruzzi, Fazzi, Passias, Rota, AT '15; Cremonesi, AT ' 15]

- More successful: systematic exploration of BPS conditions

- old methods: G-structures, pure spinors

first wave around 'O4
eg. [Gauntlett, Martelli, Sparks, Waldram '04]
[Graña, Minasian, Petrini, AT '0ヶ]

- more recent extensions:
pure spinors in odd dimensions, extended susy
eg. [Apruzzi, Fazzi, Rosa, AT 'ı3]
[Passias, Solard, AT'17; Passias, Prins, AT ' 18 8]
- once a large class is obtained: explore boundary conditions for sources
- some recent solution classes with possible sources
- AdS_{7} in IIA: $\quad S^{2} \rightarrow I$
sources: D8, D6, O8, O6
- AdS_{4} in IIA
sources: $\quad M_{4} \rightarrow \Sigma_{g} \quad \begin{aligned} & \text { Passias, Prins, AT'18; } \\ & \text { Bah, Passias, Weck '18] }\end{aligned}$ D8, D6, O8, O6

- More successful: systematic exploration of BPS conditions

- old methods: G-structures, pure spinors

first wave around 'o4
eg. [Gauntlett, Martelli, Sparks, Waldram '04]
[Graña, Minasian, Petrini, AT '0ヶ]

- more recent extensions:
pure spinors in odd dimensions, extended susy
eg. [Apruzzi, Fazzi, Rosa, AT 'ı3]
[Passias, Solard, AT'17; Passias, Prins, AT ' 18 8]
- once a large class is obtained: explore boundary conditions for sources
- some recent solution classes with possible sources

- AdS_{7} in IIA: $\quad S^{2} \rightarrow I$ sources: D8, D6, O8, O6 [Apruzzi, Fazzi, Rosa, AT'3 Apruzzi, Fazzi, Passias, Rota, AT ‘'5; Cremonesi, AT ' 15]	- AdS_{4} in IIA sources: D8, D6, O8, O6	$\begin{aligned} M_{3} & \rightarrow H_{3} \\ M_{4} & \rightarrow \Sigma_{g} \end{aligned}$	[Rota, AT'I5; Passias, Prins, AT 'ı8; Bah, Passias, Weck 'ı 8
- AdS5 in IIA: $M_{3} \rightarrow \Sigma_{g}+$ "punctures" $\begin{array}{cc} \text { sources: } & {\left[\text { Apruzzi, Fazzi, Passias, Rota, AT'}{ }^{\prime} 5\right]} \\ \text { D8, D6, D4, O8, O6 } & {[\text { Bah '15; Bah, Passias, AT 'ı6] }} \end{array}$			

- More successful: systematic exploration of BPS conditions

- old methods: G-structures, pure spinors

> first wave around 'O4
> eg. $[$ Gauntlett, Martelli, Sparks, Waldram 'O4 \rceil
> [Graña, Minasian, Petrini, AT'05 \rceil

- more recent extensions:
pure spinors in odd dimensions, extended susy
eg. [Apruzzi, Fazzi, Rosa, AT 'ı3]
[Passias, Solard, AT'17; Passias, Prins, AT ' 18 8]
- once a large class is obtained: explore boundary conditions for sources
- some recent solution classes with possible sources
- AdS_{7} in IIA: $\quad S^{2} \rightarrow I$
sources: D8, D6, O8, O6
[Apruzzi, Fazzi, Rosa, AT '33 Apruzzi, Fazzi, Passias, Rota, AT 'r5; Cremonesi, AT ${ }^{1}$ 5]
- AdS5 in IIA: $M_{3} \rightarrow \Sigma_{g}+$ "punctures" sources:
D8, D6, D4, O8, O6
[Apruzzi, Fazzi, Passias, Rota, AT '15] [Bah 'r5; Bah, Passias, AT 'ı6]
- AdS_{4} in IIA $\quad M_{3} \rightarrow H_{3}$
[Rota, AT'15;
sources: $\quad M_{4} \rightarrow \Sigma_{g} \quad \begin{aligned} & \text { Passias, Prins, AT' } 18 ; \\ & \text { Bah, Passias, Weck '18] }\end{aligned}$ D8, D6, O8, O6
- AdS_{3} in IIA: $\quad S^{6} \rightarrow I$
$\mathcal{N}=(0,8),(0,7) ; F_{4}$ and G_{3} superalg. $; \mathcal{N}=(4,4)$
sources: O8
[Dibitetto, Lo Monaco, Petri, Passias, AT'i8; Macpherson ' 18]
general lessons:
- relations between different cases suggest 'correct' coordinates
- classification efforts succeed more often than ad hoc Ansätze
- O8 appears to be particularly ubiquitous

\[

\]

$$
\begin{array}{cll}
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) & e^{\phi}=2^{5 / 4} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}} \\
\dddot{\text { interval }}=F_{0} & \checkmark & \begin{array}{c}
\\
\\
\alpha \text { piecewise cubic }
\end{array} \\
\alpha, \dot{\alpha}, \ddot{\alpha} \text { continuous } & F_{2}=\left(\frac{\alpha}{162 \pi^{2}}+\frac{\pi F_{0} \alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}}
\end{array}
$$

- At endpoint, smoothness: S^{2} should shrink, $\frac{\alpha}{\ddot{\alpha}}$ finite

$$
\Rightarrow \quad \alpha \rightarrow 0, \ddot{\alpha} \rightarrow 0
$$

$$
\begin{array}{cll}
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) & e^{\phi}=2^{5 / 4} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}} \\
\dddot{\text { interval }}=F_{0} & \checkmark & \begin{array}{c}
\\
\\
\alpha \text { piecewise cubic }
\end{array} \\
\alpha, \dot{\alpha}, \ddot{\alpha} \text { continuous } & F_{2}=\left(\frac{\alpha}{162 \pi^{2}}+\frac{\pi F_{0} \alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}}
\end{array}
$$

- At endpoint, smoothness: S^{2} should shrink, $\frac{\alpha}{\ddot{\alpha}}$ finite

$$
\Rightarrow \quad \alpha \rightarrow 0, \ddot{\alpha} \rightarrow 0
$$

- When F_{0} jumps \Rightarrow D8

$$
\begin{gathered}
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) \\
\text { interval } \\
\dddot{\alpha}=F_{0} \quad \leadsto \quad \alpha \text { piecewise cubic } \\
\alpha, \dot{\alpha}, \ddot{\alpha} \text { continuous }
\end{gathered}
$$

$$
e^{\phi}=2^{5 / 4} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}}
$$

$$
B=\pi\left(-z+\frac{\alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}}
$$

- When F_{0} jumps $\quad \Rightarrow \quad \mathrm{D} 8$
what happens with other boundary conditions?

$$
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

compare locally with

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

$\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)$
compare locally with

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

- $\alpha \rightarrow 0$

$$
d s^{2} \sim z^{1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{-1 / 2} \frac{\text { transverse } \mathbb{R}^{3}}{\left(d z^{2}+z^{2} d s_{S^{2}}^{2}\right)}
$$

$\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\operatorname{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)$
compare locally with
$d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}$

- $\alpha \rightarrow 0$

$$
\left.d s^{2} \sim z^{1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{-1 / 2} \frac{\text { transverse } \mathbb{R}^{3}}{\left(d z^{2}+z^{2} d s_{S^{2}}^{2}\right.}\right)
$$

- $\ddot{\alpha} \rightarrow 0$
transverse \mathbb{R}^{3}

$$
d s_{10}^{2} \sim z^{-1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{1 / 2}\left(\overline{d z^{2}+d s_{S^{2}}^{2}}\right)
$$

$$
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

compare locally with

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

- $\alpha \rightarrow 0$
transverse \mathbb{R}^{3}
$d s^{2} \sim z^{1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{-1 / 2}\left(\overline{d z^{2}+z^{2} d s_{S^{2}}^{2}}\right)$

- $\alpha \rightarrow 0, \dot{\alpha} \rightarrow 0$
transverse \mathbb{R}

$$
d s_{10}^{2} \sim z^{-1 / 2}\left(d s_{\mathrm{AdS}_{7}}^{2}+d s_{S^{2}}^{2}\right)+\overline{z^{1 / 2} d z^{2}}
$$

O8

$$
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

compare locally with

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

- $\alpha \rightarrow 0$

$$
\left.d s^{2} \sim z^{1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{-1 / 2} \frac{\text { transverse } \mathbb{R}^{3}}{\left(d z^{2}+z^{2} d s_{S^{2}}^{2}\right.}\right)
$$

- $\alpha \rightarrow 0, \dot{\alpha} \rightarrow 0$
transverse \mathbb{R}
$d s_{10}^{2} \sim z^{-1 / 2}\left(d s_{\text {Ads }_{7}}^{2}+d s_{S^{2}}^{2}\right)+\overline{z^{1 / 2} d z^{2}}$
O8

- Sugra artifacts, but same local behavior as solutions in flat space
- Holographic checks work out even in presence of these sources [particularly impressive for O8]

Non-supersymmetric solutions

- Every AdS_{7} solution has a non-susy 'evil twin' established via consistent truncation: some small changes
[Passias, Rota, AT ' ${ }^{5}$] $]$
$\frac{1}{\pi \sqrt{\mathbf{8}}} d s^{2}=\sqrt[12]{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\mathbf{Z} \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) \quad e^{\phi}=2^{5 \times 1} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-\mathbf{Z} \alpha \ddot{\alpha}}}$
some are pert. unstable
[Danielsson, Dibitetto, Vargas 'ı7; Apruzzi, De Luca, Gnecchi, Lo Monaco, AT, in progress]

Non-supersymmetric solutions

- Every AdS_{7} solution has a non-susy 'evil twin' established via consistent truncation: some small changes
[Passias, Rota, AT ' ${ }^{5}$]
$\frac{1}{\pi \sqrt{\Omega}} d s^{2}=\sqrt[12]{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\mathbf{Z} \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) \quad e^{\phi}=2^{\pi_{1}} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-\mathbf{\Sigma} \alpha \ddot{\alpha}}}$
some are pert. unstable
[Danielsson, Dibitetto, Vargas 'ı7; Apruzzi, De Luca, Gnecchi, Lo Monaco, AT, in progress]
- Sometimes possible to break susy by adding one term to 'pure spinor equations' for Minkowski solutions [Legramandi, AT, in progress]

Non-supersymmetric solutions

- Every AdS_{7} solution has a non-susy 'evil twin' established via consistent truncation: some small changes
[Passias, Rota, AT ' ${ }^{5}$]
$\frac{1}{\pi \sqrt{\mathbf{8}}} d s^{2}=\sqrt[12]{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\mathbf{Z} \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) \quad e^{\phi}=2^{5 \times 4} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-\mathbf{Z} \alpha \ddot{\alpha}}}$
some are pert. unstable
[Danielsson, Dibitetto, Vargas 'ı7; Apruzzi, De Luca, Gnecchi, Lo Monaco, AT, in progress]
- Sometimes possible to break susy by adding one term to 'pure spinor equations' for Minkowski solutions [Legramandi, AT, in progress]
- AdS8 solution with O8_ [direct sol. of EoM]

dS

- 4 d models are practical and nice

but they can leave doubts: have we kept all the relevant modes?
Indeed: current furious debate, notably at this conference. Many solutions, or none?
[KKLT' ${ }^{\prime}$ 3, Balasubramanian, Berglund, Conlon, Quevedo '05,...] versus [Obied, Ooguri, Spodyneiko, Vafa '18; Ooguri, Palti, Shiu, Vafa '18...]

Given the progress just reviewed, let's try directly in ten dimensions.

- A simple Ansatz [CCrrove, De Luca, AT's]

$$
\begin{array}{r}
d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda} d s_{M_{5}}^{2}\right) \\
\text { compact hyperbolic }
\end{array}
$$

"cohomogeneity one": W, λ, ϕ only depend on z
similar to relatively famous $\mathrm{Mink}_{9} \times S^{1}$ model

[Dabholkar, Park '96, Witten '97, Aharony, Komargodski, Patir 'o7]
also similar in spirit to 5 d setup described in [Silverstein, Strings 2013 talk]

- The functions won't be diff. at the O8+

$$
d s^{2}=e^{2 W} d s_{d s_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda} d s_{M_{5}}^{2}\right)
$$

Jump in first derivatives can be determined: $\left.\quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1 \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$

- by comparing with $\mathrm{O} 8+$ in flat space, or

- by paying attention to δ in EoM
- The functions won't be diff. at the O8+

$$
d s^{2}=e^{2 W} d s_{d s_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda} d s_{M_{J_{s}}}^{2}\right)
$$

Jump in first derivatives can be determined: $\left.\quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1 \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$

- by comparing with $\mathrm{O} 8+$ in flat space, or

- by paying attention to δ in EoM

$$
p=8: H=\mathbf{X}+\left|z / z_{0}\right|
$$

- Idea: if we make $H \sim e^{-4 W}$ hit zero
$\Delta \quad$ same behavior of O 8 _ for $a=0$

- The functions won't be diff. at the O8+

$$
d s^{2}=e^{2 W} d s_{d s_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda} d s_{M_{5}}^{2}\right)
$$

Jump in first derivatives can be determined: $\left.\quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1 \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$

- by comparing with $\mathrm{O} 8+$ in flat space, or

- by paying attention to δ in EoM
- Idea: if we make $H \sim e^{-4 W}$ hit zero

$$
p=8: H=\mathbf{X}+\left|z / z_{0}\right|
$$

$$
\triangleleft \quad \text { same behavior of } \mathrm{O} 8-\text { for } a=0
$$

- Notice that $e^{\phi} \sim H^{(3-p) / 4}=H^{-5 / 4}$ diverges
- Indeed we manage to reach the behavior

$$
e^{W} \sim e^{\frac{1}{5} \phi} \sim e^{\frac{1}{2} \lambda_{i} / 2} \sim\left|z-z_{0}\right|^{-1 / 4}
$$

same as O8_ in flat space
[even the coefficients work]

- Indeed we manage to reach the behavior

$$
e^{W} \sim e^{\frac{1}{5} \phi} \sim e^{\frac{1}{2} \lambda_{i} / 2} \sim\left|z-z_{0}\right|^{-1 / 4}
$$

same as O8_ in flat space
[even the coefficients work]

- Rescaling symmetry: $g_{M N} \rightarrow e^{2 c} g_{M N}, \quad \phi \rightarrow \phi-c, \quad F_{4} \rightarrow e^{4 c} F_{4}$

it makes strong-coupling region small, but it doesn't make it disappear.
- Rescaling symmetry: $g_{M N} \rightarrow e^{2 c} g_{M N}, \quad \phi \rightarrow \phi-c, \quad F_{4} \rightarrow e^{4 c} F_{4}$

it makes strong-coupling region small, but it doesn't make it disappear.
- In the O8_ region stringy corrections become dominant $\ldots \gg e^{-2 \phi} R^{4} \gg e^{-2 \phi} R$ $\stackrel{\hat{A}^{4}}{R^{4}}$
ideally in this region we'd switch to another duality frame.
- Rescaling symmetry: $g_{M N} \rightarrow e^{2 c} g_{M N}, \quad \phi \rightarrow \phi-c, \quad F_{4} \rightarrow e^{4 c} F_{4}$

it makes strong-coupling region small, but it doesn't make it disappear.
- In the O8_ region stringy corrections become dominant $\ldots \gg e^{-2 \phi} R^{4} \gg e^{-2 \phi} R$ $\stackrel{\hat{R}^{4}}{ }$
ideally in this region we'd switch to another duality frame.
In other words: string theory generates eff. potential $V(c)$ which should fix c
it has been argued [?] that it also has a supergravity contribution [Cribiori, Junghans ${ }^{9} 9$]
- Rescaling symmetry: $g_{M N} \rightarrow e^{2 c} g_{M N}, \quad \phi \rightarrow \phi-c, \quad F_{4} \rightarrow e^{4 c} F_{4}$

it makes strong-coupling region small, but it doesn't make it disappear.
- In the O8_ region stringy corrections become dominant $\quad \ldots \gg e^{-2 \phi} R^{4} \gg e^{-2 \phi} R$ sugra action is least important term; \widehat{R}^{4}
ideally in this region we'd switch to another duality frame.
In other words: string theory generates eff. potential $V(c)$ which should fix c
it has been argued [?] that it also has a supergravity contribution [Cribiori, Junghans ${ }^{9} 9$]
- Hope that this solution is sensible comes from similarity with flat-space O8_
- We have also tried to replace $\mathrm{O} 8-\rightarrow \mathrm{O} 8_{-}$
we now need $\quad d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S^{2}}^{2}\right)$
again all functions only dep. on z
surrounds the O6

$$
\begin{aligned}
H & =h_{1} d z \wedge \operatorname{vol}_{2}+h_{2} \operatorname{vol}_{3} \\
F_{2} & =f_{2} \operatorname{vol}_{2} \\
F_{4} & =f_{41} \operatorname{vol}_{3} \wedge d z+f_{42} \operatorname{vol}_{4} \\
F_{0} & \neq 0
\end{aligned}
$$

- We have also tried to replace $\mathrm{O} 8-\rightarrow \mathrm{O} 8_{-}$
we now need $\quad d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S^{2}}^{2}\right)$
again all functions only dep. on z
surrounds the O6

$$
\begin{aligned}
H & =h_{1} d z \wedge \operatorname{vol}_{2}+h_{2} \operatorname{vol}_{3} \\
F_{2} & =f_{2} \operatorname{vol}_{2} \\
F_{4} & =f_{41} \operatorname{vol}_{3} \wedge d z+f_{42} \operatorname{vol}_{4} \\
F_{0} & \neq 0
\end{aligned}
$$

- we already know one such solution for $\Lambda<0$:
from a non-susy AdS_{7} solution with O8+ and O6_ $\quad \alpha=3 k\left(N^{2}-z^{2}\right)+n_{0}\left(z^{3}-N^{3}\right)$

- we slowly modified it numerically, bringing Λ up

$$
d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S^{2}}^{2}\right)
$$ [functions rescaled for clarity]

We still obtain
the O6 boundary.

- we slowly modified it numerically, bringing Λ up

$$
d s^{2}=e^{2 W} d s_{d s_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S_{2}^{2}}^{2}\right)
$$ [functions rescaled for clarity]

We still obtain the O6 boundary.

- But do we also take the 'hole interior' seriously?
for AdS solution $\quad \frac{1}{\sqrt{\pi}} d s^{2}=12 \sqrt{\neq \frac{\chi}{\ddot{\ddot{q}}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{\not \ddot{\chi}_{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)$ there is a sourceless 'pre-O6' metric obtained by 'unwarping'
- we slowly modified it numerically, bringing Λ up

$$
d s^{2}=e^{2 W} d s_{d s_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S_{2}}^{2}\right)
$$ [functions rescaled for clarity]

We still obtain the O6 boundary.

- But do we also take the 'hole interior' seriously?
for AdS solution $\quad \frac{1}{\sqrt{\pi}} d s^{2}=12 \sqrt{\neq \frac{\chi}{\ddot{\ddot{q}}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{\neq \ddot{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)$
there is a sourceless 'pre-O6' metric obtained by 'unwarping'
- Similar request for dS solution introduces many fine-tunings. Numerics unclear [so far]
- we slowly modified it numerically, bringing Λ up

$$
d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S_{2}^{2}}^{2}\right)
$$ [functions rescaled for clarity]

We still obtain the O6 boundary.

- But do we also take the 'hole interior' seriously?
for AdS solution $\quad \frac{1}{\sqrt{\pi}} d s^{2}=12 \sqrt{\chi \frac{\chi}{\ddot{\ddot{q}}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{\neq \ddot{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)$
there is a sourceless 'pre-O6' metric obtained by 'unwarping'
- Similar request for dS solution introduces many fine-tunings. Numerics unclear [so far]
- A perhaps more physical procedure: probe analysis

Conclusions

- A lot of progress in AdS solutions
- often localized O-plane sources are possible - holography works even in their presence
- sometimes non-supersymmetric
- Time to look for de Sitter
- Using numerics, we find dS solutions with O8-planes in relatively simple setup
- O8-O6 solutions also promising
- There are regions where supergravity break down.

Inevitable! If you want solutions with O-planes.
We better learn how to deal with them.

Backup slides

Examples

[SO-USp gauge groups]

Possible criticism of the O8-O8 model

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- $\mathrm{O}_{-}: \quad \partial_{z}^{2}(\xrightarrow{\hat{\sim}})=-\left.\delta \quad \triangleleft \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

Possible criticism of the O8-O8 model

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- $\mathrm{O}_{-}: \quad \partial_{z}^{2}(\xrightarrow{\stackrel{\uparrow}{\longrightarrow}})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

- Near O8_, supergravity breaks down;
we shouldn't take its EoMs seriously.

Possible criticism of the O8-O8 model

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- $\mathrm{O}_{-}: \quad \partial_{z}^{2}(\xrightarrow{\stackrel{\uparrow}{\longrightarrow}})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway [Cribiori, Junghans 'ro]

Possible criticism of the O8-O8 model

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- $\mathrm{O}_{-}: \quad \partial_{z}^{2}(\xrightarrow{\stackrel{\uparrow}{\longrightarrow}})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway [Cribiori, Junghans '90]

- Not too clear: $e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \partial_{z}^{2} \log \left|z-z_{0}\right|$: discontinuity of div. function?

Possible criticism of the $\mathbf{O 8}-\mathbf{O 8}$ model

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- O8_:

$$
\partial_{z}^{2}(\xrightarrow{\uparrow})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1
$$

- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway [Cribiori, Junghans '90]

- Not too clear: $e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \partial_{z}^{2} \log \left|z-z_{0}\right|$ discontinuity of div. function?
- even worse if we write it as $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \sim \frac{1}{\left|z-z_{0}\right|} \delta+\ldots$

Possible criticism of the $\mathbf{O 8}-\mathbf{O 8}$ model

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- O8_:

$$
\partial_{z}^{2}(\xrightarrow{\uparrow})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1
$$

- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway [Cribiori, Junghans 'ro]

- Not too clear: $e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \partial_{z}^{2} \log \left|z-z_{0}\right|$: discontinuity of div. function?
- even worse if we write it as $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \sim \frac{1}{\left|z-z_{0}\right|} \delta+\ldots$
- if we extrapolate from $\mathrm{O} 8_{+}$with $a \neq 0$:

$$
\partial_{z}^{2}(\xrightarrow{\hookrightarrow})=\left.\delta \quad \Longleftrightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow z_{0}^{+}}=1
$$

this works \checkmark

- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
and we have a non-zero coeff. here.
- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
and we have a non-zero coeff. here.
- that's a bit like complaining that $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \Rightarrow\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}\right) \delta \sim\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}^{\prime}\right) \delta$
this coeff. is fine confusing: if we write $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \delta+\ldots$, it works fine \checkmark
- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
and we have a non-zero coeff. here.
- that's a bit like complaining that $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \Rightarrow\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}\right) \delta \sim\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}^{\prime}\right) \delta$
this coeff. is fine
confusing: if we write $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \delta+\ldots$, it works fine \checkmark
- Or: $e^{W-\phi} f_{i}^{\prime}=1$ works, but $f_{i}^{\prime}=e^{\phi-W}$?
works at leading $\frac{1}{\left|z-z_{0}\right|}$ order, but not with subleading constant.
- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
and we have a non-zero coeff. here.
- that's a bit like complaining that $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \Rightarrow\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}\right) \delta \sim\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}^{\prime}\right) \delta$
this coeff. is fine
confusing: if we write $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \delta+\ldots$, it works fine \checkmark
- Or: $e^{W-\phi} f_{i}^{\prime}=1$ works, but $f_{i}^{\prime}=e^{\phi-W}$? works at leading $\frac{1}{\left|z-z_{0}\right|}$ order, but not with subleading constant.

At what order should we then go for full satisfaction? These are boundary conditions.

- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$ there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$ and we have a non-zero coeff. here.
- that's a bit like complaining that $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \Rightarrow\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}\right) \delta \sim\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}^{\prime}\right) \delta$ this coeff. is fine
confusing: if we write $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \delta+\ldots$, it works fine \checkmark
- Or: $e^{W-\phi} f_{i}^{\prime}=1$ works, but $f_{i}^{\prime}=e^{\phi-W}$?
works at leading $\frac{1}{\left|z-z_{0}\right|}$ order, but not with subleading constant.
At what order should we then go for full satisfaction? These are boundary conditions.

To me this confirms understanding sugra EoMs in strongly coupled region is not a meaningful enterprise.

Of course, this also confirms that the fate of our solutions depends on quantum corrections.

