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Graña, Minasian, Petrini, AT ’06,

Caviezel, Koerber, Körs, Lüst, Wrase, Zagermann ’08,
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• it has been hard to find examples; often people have resorted to ‘smearing’

localized smeared

However, O-planes should sit at fixed loci of involutions

they shouldn’t be smeared by definition.
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This talk:

• Recent progress in 
finding compactifications with sources

• first steps in applying it to de Sitter
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D3 dissolve; no source 
after near-horizon

N D3

AdS5 ⇥ S5

•Rarely: near-horizon limits 
from brane intersections

[Youm ’99, 
Brandhuber, Oz ’99]

D4 dissolved, but 
O8 remains O8

N D4

AdS6 ⇥ (top.S4)

•  But brane intersections for more complicated configurations is not known…

N = 17

NS5 stack

D6

D8
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general lessons: • relations between different cases suggest ‘correct’ coordinates

• O8 appears to be particularly ubiquitous

• classification efforts succeed more often than ad hoc Ansätze
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The expression for B is now valid both in the massless and massive regions. In the

latter we have that F2 � F0B is a closed form, as it should be.

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have

small curvature and string coupling. Usually one tends to take large ranks. However,

in our case it seems more appropriate to scale the number of gauge groups. Intuitively,

the idea is that our solutions came from a near-horizon limit of NS5-branes, and the

curvature is small when the number N of fivebranes is large. This is even clearer for

the massless solution (2.10), which is a reduction of N M5-branes.

Indeed one sees from (A.5) that making N very large makes the range of y become

large too. This looks promising, but one also sees from (2.19) that the �y
i

for i  L

and i � R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows

that only the massless region is expanding; the massive regions stay the same size. In

terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting
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Non-supersymmetric solutions

•Every AdS7 solution has a non-susy ‘evil twin’ 
established via consistent truncation: some small changes
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The expression for B is now valid both in the massless and massive regions. In the

latter we have that F2 � F0B is a closed form, as it should be.

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have

small curvature and string coupling. Usually one tends to take large ranks. However,

in our case it seems more appropriate to scale the number of gauge groups. Intuitively,

the idea is that our solutions came from a near-horizon limit of NS5-branes, and the

curvature is small when the number N of fivebranes is large. This is even clearer for

the massless solution (2.10), which is a reduction of N M5-branes.

Indeed one sees from (A.5) that making N very large makes the range of y become

large too. This looks promising, but one also sees from (2.19) that the �y
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for i  L

and i � R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows

that only the massless region is expanding; the massive regions stay the same size. In

terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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more and more. A more careful analysis indeed concludes that the D8’s are becoming
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ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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• Sometimes possible to break susy by adding one term to ‘pure spinor equations’
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dS
• 4d models are practical and nice

but they can leave doubts: have we kept all the relevant modes? 

Given the progress just reviewed, let’s try directly in ten dimensions.

Indeed: current furious debate, notably at this conference. Many solutions, or none? 
[KKLT ’03, Balasubramanian, Berglund, Conlon, Quevedo ’05,…]

versus [Obied, Ooguri, Spodyneiko, Vafa ’18; Ooguri, Palti, Shiu, Vafa ’18…]



• A simple Ansatz

ds2 = e2W ds2dS4
+ e�2W (dz2 + e2�ds2M5

)

[Córdova, De Luca, AT ’18]

“cohomogeneity one”: W , �, � only depend on z

Z2

O8+

O8�

same effect as
O8� + 16D8

z

compact hyperbolic

[Dabholkar, Park ’96, Witten ’97,  
Aharony, Komargodski, Patir ‘07]similar to relatively famous Mink9 ⇥ S1 model

also similar in spirit to 5d setup described in [Silverstein, Strings 2013 talk]



• The functions won’t be diff. at the O8+

z

e�4W

Jump in first derivatives can be determined: 

• by comparing with O8+ in flat space, or

ds2 = e2W ds2dS4
+ e�2W (dz2 + e2�ds2M5

)

O8+

• by paying attention to � in EoM

eW��f 0
i |z!0+ = �1 fi = {W, 1

5�,
1
2�}
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eW ⇠ e
1
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1
2�i/2 ⇠ |z � z0|�1/4 same as O8_ in flat space

[even the coefficients work]
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• Indeed we manage to reach the behavior
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FIG. 2. A numerical solution with ⇤ = 1. The functions are
e� (solid), eW (dashed), ↵ (dotted, rescaled). At the right
endpoint, it behaves as an O8� with diverging dilaton.

Near the O8� one can also perform a perturbative
analysis like that resulting in (6). This is done by im-
posing that the leading power behavior for the dilaton
and metric coe�cients is the one inferred from (7). On
the resulting local solution (which matches with our nu-
merical one in near the O8�) all the conditions in (4) are
automatically satisfied, with the correct tension.

The simple class of de Sitter solutions presented above
can be enlarged by including additional fluxes. For in-
stance, we can generalize our metric ansatz to

ds2
10 = e2W ds2

dS4
+ e�2W

�
dz2 + e2�2ds2

M2
+ e2�3ds2

M3

�
.

(8)
Compared to our previous example, we have split the
five-manifold M5 into M2 and M3 which are two Einstein
spaces with Ricci scalars 22 and 33; below we see that
at least one of them must be negative. Again we take W,
�i, � to only depend on z, and in addition to F0 we allow

F4 = f4e
�6W+3�3�2�2dz ^ volM3 . (9)

Here f4 is a constant, and the z dependence has been
chosen such that the equation of motion d ? F4 = 0 is
automatically satisfied.

In this more general setup, the equations of motion
away from sources read:

0 = � F 2
0 e2��2W + 63e

�2�3 � 12�0
3�

0 + 15 (�0
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,

where now ↵ ⌘ e2�2+3�3�2�, and at the sources we must
also provide the discontinuity equation 1

2��0
3 = �W 0.

Solutions can now be constructed as above. We begin
with a finite coupling O8+ at z = 0 and evolve to an
infinite coupling O8� at z = z0. Note that F4 in (9) is
odd under the orientifold as expected. In this case, the
analog of the constraint (5) is

⇤ = �1

2
2e

�2�2+4W � 3

4
3e

�2�3+4W � f2
4

8
e�4�2�2W+2� ,

(11)
where the right-hand-side is evaluated at the O8+. From
this we see in particular that at least one of i must be
negative. The resulting solutions depend on two contin-
uous parameters, which can be thought of as the remain-
ing initial conditions of the solution near the O8+ after
tuning to hit the O8�.4

Let us now comment on the properties of these de Sit-
ter solutions. The first significant feature is that all our
examples have classical moduli; i.e. the solutions come
in continuous families. The number of moduli apparent
from our construction is easily seen by parameter count-
ing. The local solutions (2) depend on two continuous
parameters and require a one-parameter tuning to reach
a physical O8�, resulting in one modulus. The more
general solutions (8) have two moduli.

One way to understand some of these moduli is that
the equations of motion are invariant under the rescaling

gMN ! e2cgMN , � ! � � c , F4 ! e4cF4 . (12)

This rescaling can be used to make the coupling and cur-
vature as small as one wants, and in particular to para-
metrically reduce the region around the O8� where su-
pergravity breaks down.

In the simplest solutions of type (1), the four-form flux
vanishes and the single modulus is the parameter c above.
In the more general solutions (8) with non-zero F4, flux
quantization implies that the rescaling parameter c is dis-
cretized. The two continuous moduli of these solutions
do not admit such a simple presentation.

In the full string theory, one expects that quantum cor-
rections will generate a potential on these moduli. In the

4 As another consistency check of these equations, we can see that
they admit a solution AdS4⇥H2⇥S4, which is a simple variation
on the AdS6 ⇥ S4 of [21]. This is most easily seen by going to a
gauge where dz2 in (8) is replaced by e2Qdz2. Then the solution
is obtained by setting Q = 2W , �2 = 2W , �3 = 2W + log(sin z),
� = 5W+const., W = � 1

6 log(F0 cos z)+const., 2 = ⇤, and
3 = 2. This results in a negative cosmological constant.

• Rescaling symmetry:
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50

100

150

it makes strong-coupling region small, but it doesn’t make it disappear.
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e� (solid), eW (dashed), ↵ (dotted, rescaled). At the right
endpoint, it behaves as an O8� with diverging dilaton.
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vanishes and the single modulus is the parameter c above.
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quantization implies that the rescaling parameter c is dis-
cretized. The two continuous moduli of these solutions
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In the full string theory, one expects that quantum cor-
rections will generate a potential on these moduli. In the
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they admit a solution AdS4⇥H2⇥S4, which is a simple variation
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• In the O8_ region stringy corrections become dominant
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pergravity breaks down.

In the simplest solutions of type (1), the four-form flux
vanishes and the single modulus is the parameter c above.
In the more general solutions (8) with non-zero F4, flux
quantization implies that the rescaling parameter c is dis-
cretized. The two continuous moduli of these solutions
do not admit such a simple presentation.

In the full string theory, one expects that quantum cor-
rections will generate a potential on these moduli. In the

4 As another consistency check of these equations, we can see that
they admit a solution AdS4⇥H2⇥S4, which is a simple variation
on the AdS6 ⇥ S4 of [21]. This is most easily seen by going to a
gauge where dz2 in (8) is replaced by e2Qdz2. Then the solution
is obtained by setting Q = 2W , �2 = 2W , �3 = 2W + log(sin z),
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6 log(F0 cos z)+const., 2 = ⇤, and
3 = 2. This results in a negative cosmological constant.
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FIG. 2. A numerical solution with ⇤ = 1. The functions are
e� (solid), eW (dashed), ↵ (dotted, rescaled). At the right
endpoint, it behaves as an O8� with diverging dilaton.
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[Córdova, De Luca, AT, work in progress]

we now need

surrounds the O6

Here
∑

i τ6
iδ6
i(...) and

∑
i τ8

iδ8
i(...) are sums over the six- and eight- dimensional sources present in

the solutions. As we will see, in many cases the δi are just formal, since the submanifold where
they are supported is not part of the manifold.

Other than these equations, we also need the equations of motion for the fluxes.

Outside of any source, nor points where the two- and three- dimensional Einstein space shrink1,
the most general ansatz compatible with the symmetries of the metric is:

H = h1dz ∧ vol2+h2vol3 (3)
F2 = f2vol2 (4)
F4 = f41vol3∧ dz+ f42vol4 (5)
F0 =/ 0 (6)

where again all the functions depend only on the coordinate z.

We are now going to study the Bianchi equations,

dH = −κ2τ5δ5 (7)
dF2−H ∧F0 = −κ2τ6δ6 (8)
dF4−H ∧F2 = 0 (9)

dF0 = −κ2τ8δ8 (10)

and their Bianchi equations

d(e−2φ⋆H) = F2∧ ⋆F4−
1
2
F4∧F4−F0⋆F2 (11)

d(⋆F2) = −H ∧ ⋆F4 (12)
d(⋆F4) = −H ∧F4 (13)

locally outside of any source identifying 3 possible branches.

1.1 Studying the second branch: F0=/ 0

Summing up, in this branch we take (h1≡h) the local form of the fluxes to be

H = hdz ∧ vol2 (14)
F2 = f2vol2 (15)
F4 = f41vol3∧ dz+ f42vol4 (16)
F0 =/ 0 (17)

with

h1= f2
′/F0, f42= cost, f41=

1
F0
eQ−6W−2λ2+3λ3(F0c1− f42f2). (18)

We also have the equation

f2
′′= e2(Q−5W+φ)(F0c1f42+(e8WF0

2− f42
2 )f2)+ f2

′(Q′− 4W ′+2λ2
′ − 3λ3′ +2φ′) (19)

There are 2 independent constants: c1 and f42, and one unknown function f2, locally determined
by equation (19).

1. Otherwise the volumes are not defined.

2

ds2 = e2W ds2
dS4

+ e�2W (dz2 + e2�3ds2
M3

+ e2�2ds2
S2)

• We have also tried to replace O8� � O6�

again all functions only dep. on z
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• we already know one such solution for � < 0:

from a non-susy AdS7 solution with O8+ and O6_

1�
�
ds2 = 12

�
��

�̈ds2
AdS7 +

�
� �̈

�

�
dz2 + �2

�̇2���̈ds2
S2

�

AdS4 � H3 compact hyperbolic

↵ = 3k(N2 � z2) + n0(z3 �N3)

O8+

O6_



• we slowly modified it numerically, bringing � up

We still obtain 
the O6 boundary.

ds2 = e2W ds2
dS4

+ e�2W (dz2 + e2�3ds2
M3

+ e2�2ds2
S2)
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We still obtain 
the O6 boundary.
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• A perhaps more physical procedure: probe analysis perhaps following 
[Sen ’96, Saracco, AT, Torroba ’13]
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Conclusions
•A lot of progress in AdS solutions

•Time to look for de Sitter

•often localized O-plane sources are possible

•sometimes non-supersymmetric

•holography works even in their presence

• Using numerics, we find dS solutions with O8-planes
in relatively simple setup

• O8-O6 solutions also promising 

• There are regions where supergravity break down. 

Inevitable! If you want solutions with O-planes.
We better learn how to deal with them.
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•Holographic checks work with all sources [Cremonesi, AT ’15]
[Apruzzi, Fazzi ‘17]

integral over 
internal dimensions
[Henningson, Skenderis ’98]

Examples

 susy, grav. & 
R-symmetry anomalies

[Ohmori, Shimizu,
 Tachikawa, Yonekura ’14;

Cordova, Dumitrescu, Intriligator ’15]

a = 16
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5 k3)

[Bah, Passias, AT ’16]
[Apruzzi, Fazzi ‘17]
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