INSTITUT
 POLYTECHNIQUE DEPARIS
 SUPERSYMMETRY BREAKING AND THE SWAMPLAND

Based on collaboration with
Q. Bonnefoy and S. Lüst , 1811.11199 + unpublished ,
I. Bena, M. Grana and S. Lüst, 1809.06861

Outline

Why perturbative strings with broken SUSY?

The weak gravity conjecture (WGC)

Brane interactions in string theory

Supersymmetry breaking and WGC

Perspectives

Why perturbative strings with broken SUSY?

(talks: perturbative Bonnefoy,Cribiori,Coudarchet, Faraggi, Roupec,Wrase... nonperturbative (KKLT): Blumenhagen,Buratti, Grana, Hebecker, Klaewer, S.Lust, McAllister, Moritz,Sethi, Soler, Van Rlet ...

- Since consistency/conceptual issues are similar in both perturbative/nonperturbative cases
Ex: hierarchies from fluxes

long throats

Warping redshifts mass of a complex structure modulus, probably generically the case for any long thoat
Affects steps I and III of KKLT (Bena,E.D.,Grana,S.Lust, '18;
Blumenhagen, Klaewer, Schechter, '19;
Talks: Blumenhagen, Grana,Klaewer,S.Lust)

- Since there a landscape of perturbative strings with broken SUSY and non-SUSY strings:
- Strings broken SUSY: Scherk-Schwarz comp., brane SUSY breaking, internal magnetic fields/intersecting branes
- non-SUSY: comp. of $S O(16) \times S O(16)$ heterotic strings, $O^{\prime} B$ orientifolds
- Since scale of SUSY breaking higher than expected (LHC)
- Important to understand their role in the swampland

©nis The weak gravity conjecture (WGC)

Arkani-Hamed, Motl,Nicolis, Vafa, 2006

Talks: Andriolo,Bonnefoy, Buratti, Gonzalo, Heidenreich,Heisteeg,Ibanez,Palti,Vafa...

Loose form:

GRAVITY IS THE WEAKEST FORCE.

For a theory with a massless photon coupled to gravity, it implies that there should exist one charged particle with

$$
|q| M_{P} \geq m
$$

Some arguments in favor of WGC:
a) Avoidance of stable charged black hole remnants
b) Absence of global symmetries in string theory/quantum gravity
a) A charged (RN) black hole has $\quad|Q|<M$ It can evaporate by emitting particles with $|q| M_{P} \geq m$
b) In the limit $\quad q \rightarrow 0$ gauge symmetry becomes global. This should be forbidden, at least in string theory.

There are potential intriguing connections between WGC and

- The hierarchy problem (Cheung-Remmen) : quadratically div. contributions to a charged scalar could violate WGC
- Cosmic censorship (Horowitz et al.) : bad singularities in geometries violating CC are forbidden by WGC

Brane interactions in string theory

- Charged BPS D-branes have mass/tension and in superstrings they do not interact, since
$T=|Q|$
What about non-BPS charged ones ?
A simple way to generate them is putting internal magnetic fluxes on DP branes \longrightarrow generate lower-dim. charges, bound states of branes

$$
\int_{D p} C \wedge e^{F}=\int_{D p}\left(C_{p+1}+C_{p-1} \wedge F+\frac{1}{2} C_{p-3} \wedge F \wedge F+\cdots\right)
$$

Interesting example: D6 branes in type IIA, wrapping the whole internal space:

Such D6 branes behave as particles in spacetime. We compute the interaction potential of two such objects, separated by a distance r in space (string formulae). Then take the limits:

- Large distance $r \gg \sqrt{\alpha^{\prime}}$: tree-level exchange of SUGRA modes
- Small distance $r \ll \sqrt{\alpha^{\prime}}$: one-loop of charged states
- Magnetic fields are quantized: $F_{i}=\frac{k_{i}}{v_{i}}, k_{i} \in Z$

Defining $\tan \pi \epsilon_{i}=\pi q F_{i}, 0 \leq \epsilon_{i} \leq 1$, one finds

- large distances

$V_{6_{1} 6_{2}} \sim \prod_{i=1}^{3}\left(q k_{i}\right) \int_{0}^{\infty} \frac{d l}{l^{3 / 2}} \frac{\sin \frac{\pi\left(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right)}{2} \sin \frac{\pi\left(-\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right)}{2} \sin \frac{\pi\left(\epsilon_{1}-\epsilon_{2}+\epsilon_{3}\right)}{2} \sin \frac{\pi\left(\epsilon_{1}+\epsilon_{2}-\epsilon_{3}\right)}{2}}{\sin \pi \epsilon_{1} \sin \pi \epsilon_{2} \sin \pi \epsilon_{3}} e^{-\frac{r^{2}}{2 \pi \alpha^{\prime} l}}$
which is $V_{6_{1} 6_{2}} \sim \prod_{i=1}^{3}\left(q k_{i}\right) \frac{\sin \frac{\pi\left(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right)}{2} \sin \frac{\pi\left(-\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right)}{2} \sin \frac{\pi\left(\epsilon_{1}-\epsilon_{2}+\epsilon_{3}\right)}{2} \sin \frac{\pi\left(\epsilon_{1}+\epsilon_{2}-\epsilon_{3}\right)}{2}}{\sin \pi \epsilon_{1} \sin \pi \epsilon_{2} \sin \pi \epsilon_{3}} \frac{1}{r}$
- short distances

$$
r \ll \sqrt{\alpha^{\prime}}
$$

$$
V_{6_{1} 6_{2}} \sim \prod_{i=1}^{3}\left(q k_{i}\right) \int_{0}^{\infty} \frac{d \tau_{2}}{\tau_{2}^{3 / 2}} \frac{\sinh \frac{\tau_{2}\left(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right)}{4} \sinh \frac{\tau_{2}\left(-\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right)}{4} \sinh \frac{\tau_{2}\left(\epsilon_{1}-\epsilon_{2}+\epsilon_{3}\right)}{4} \sinh \frac{\tau_{2}\left(\epsilon_{1}+\epsilon_{2}-\epsilon_{3}\right)}{4}}{\sinh \frac{\tau_{2} \epsilon_{2}}{2} \sinh \frac{\tau_{2}(2)}{2} \sinh \frac{\tau_{2} \epsilon_{3}}{2}} e^{-\frac{\tau_{2} r^{2}}{4 \pi \alpha^{\prime}}}
$$

- No interaction if $\epsilon_{1} \pm \epsilon_{2} \pm \epsilon_{3}=0$

In this case there is some partial SUSY preserved by the branes. If SUSY broken, there are potential tachyons in the charged open string spectrum. They can be avoided (any r) provided triangle inequalities are satisfied:

$$
\begin{gathered}
\epsilon_{1}+\epsilon_{2} \geq \epsilon_{3}, \epsilon_{2}+\epsilon_{3} \geq \epsilon_{1} \\
\epsilon_{3}+\epsilon_{1} \geq \epsilon_{2}, \epsilon_{1}+\epsilon_{2}+\epsilon_{3} \leq 2
\end{gathered}
$$

- Necessary condition: all $\epsilon_{i} \neq 0$

Easy to check that :

- Absence of tachyons any r
repulsive brane interactions
- Tachyons short distances attractive brane interactions
- Any connection with the existence of black holes in type IIA (WGC) ?

©TIS WGC and SUSY breaking in string theory

 (more details: talk Q. Bonnefoy)- Charged BPS D-branes have mass/tension and in superstrings they satisfy marginally WGC $T=|Q|$
- Our « particles » are D1 branes (in type I strings) wrapping a circle. They behave like particles after compactification.
- SUSY broken by compactification along the circle (Scherk-Schwarz), different boundary conditions fermions /bosons (heterotic strings: Rohm, Ferrara, Kounnas,Porrati: type I/II Blum,Dienes; Antoniadis,E.D., Sagnotti...)

$$
\Phi(2 \pi R)=e^{i q \int A} \Phi(0), \Psi(2 \pi R)=-e^{i q \int A} \Psi(0)
$$ mass splittings ($A=\frac{a}{R}=$ Wilson line)

$$
M_{k, \Phi}=(k+a) / R \quad M_{k, \Psi}=(k+a+1 / 2) / R
$$

- SUSY breaking generates a runaway potential for the radius R

$$
\mathcal{L}=\left(\frac{\partial R}{R}\right)^{2}-\frac{c}{R^{9}}
$$

similar to quintessence models, $R=e^{\frac{\sigma}{2}}$.

- SUSY restored in the $R \rightarrow \infty$ limit. Assume R is rolling slowly towards the runaway ($c>0$ with appropriate WL:
stability subtle: Abel,E.D.,Lewis,Partouche)

We are interested in D1-D1 interactions, for branes separated by a distance $r=|\vec{r}|$ in space (and $2 \pi a R^{\prime}$ on the circle)

- For superstrings, cancelation between NS-NS and RR exchanges, for $T_{1}=\left|Q_{1}\right|$
- SUSY breaking generates quantum corrections to T_{1} and Q_{1}

$$
\begin{aligned}
& T_{1, e f f}=T_{1}+g_{s} T_{1}^{\prime}+\cdots \\
& Q_{1, e f f}=Q_{1}+g_{s} Q_{1}^{\prime}+\cdots
\end{aligned}
$$

- Naive implementation of WGC: repulsive D1-D1 interaction long distances $r \gg \sqrt{\alpha^{\prime}}$ (repulsive force conjecture: Palti; talk Heidenreich)

cirs

One-loop brane-brane interactions can be expressed as treelevel exchange of closed-string modes (for $r^{2} \gg \alpha^{\prime}$)
The result is (one needs
field-theory gravity (closed string) states string methods)
$V_{11}=-\frac{R \alpha^{\prime 2}}{2 \pi^{2}} \sum_{n} \int d^{8} k e^{i \mathbf{k r}}\left[(1-1) \frac{\cos \left[4 \pi n a_{i}\right] \cos \left[4 \pi n a_{j}\right]}{k^{2}+\frac{4 n^{2} R^{2}}{\alpha^{2}}}\right.$
windings closed momenta perp. strings to D1 branes

$$
\begin{aligned}
& \left.+\frac{1}{8} \frac{\cos \left[2 \pi(2 n+1) a_{i}\right] \cos \left[2 \pi(2 n+1) a_{j}\right]}{k^{2}+\frac{(2 n+1)^{2} R^{2}}{\alpha^{\prime 2}}-\frac{2}{\alpha^{\prime}}}\right] \\
& \quad \text { masses closed string states } \\
& \text { (would-be tachyon, wrong GSO projection) }
\end{aligned}
$$

Massless exchange cancels: Yukawa attraction

$$
V \sim-\frac{1}{r} e_{\text {E. Dudas -cNRS and E. Povtecentioue }}^{-m r}
$$

We believe NO : large-distance interactions governed by

Quantum corrections to brane tension

massless exchange generated at the next perturbative order

Quantum correction to D1-brane tension = brane self-energy

$$
T_{1}^{\prime}=V_{11}(r=0)<0
$$

One finds

$$
T_{1, \mathrm{eff}}=T_{1}-\frac{2}{\pi^{3} R^{2}} \sum_{n} \frac{1}{(2 n+1)^{2}}=T_{1}-\frac{1}{2 \pi R^{2}} \quad, \quad M_{0}=2 \pi R T_{1, \mathrm{eff}}
$$

There is no charge renormalization at that order $Q_{1}^{\prime}=0$. (gauge invariance). We obtain therefore $T_{1, \text { eff }}<Q_{1, \text { eff }}$

At large distances and after compactification, we can write brane-brane interactions as

RR exchange dilaton graviton
$V_{11}^{(0)}=\sum_{\mathbf{p}} \frac{16 \kappa_{10}^{2} \pi R}{(2 \pi)^{8} V_{5}} \int d^{3} k e^{i \mathbf{k r}}\left[\frac{Q_{1, \mathrm{eff}}^{2}}{k^{2}+m_{\mathbf{p}}^{2}}-\frac{T_{1, \mathrm{eff}}^{2}}{4}\left(\frac{1}{k^{2}+m_{\mathbf{p}}^{2}+m_{0}^{2}}+\frac{3}{k^{2}+m_{\mathbf{p}}^{2}}\right)\right]$
$V_{11}^{(n)}=-\frac{R \alpha^{\prime 2}}{16 \pi^{2} V_{5}} \sum_{\mathbf{p}} \int d^{3} k e^{i \mathbf{k r}} \frac{\cos \left[2 \pi a_{i}\right] \cos \left[2 \pi a_{j}\right]}{k^{2}+m_{\mathbf{p}}^{2}+\frac{R^{2}}{\alpha^{\prime 2}}-\frac{2}{\alpha^{\prime}}}$
$V_{11}^{(0)}=0$ at one-loop. Our arguments imply
$V_{11}^{(0)}>0$ at next order (genus $3 / 2$).

We can define the « particle » mass and charge

$$
M_{0}=2 \pi R T_{1, \mathrm{eff}} \quad, \quad Q_{0}=2 \pi R Q_{1, \mathrm{eff}}
$$

We can then write the approximate long-distance potential as

$$
\begin{gathered}
V_{11} \sim \frac{1}{M_{P}^{2}}\left[\frac{\frac{4}{3} Q_{0}^{2}-M_{0}^{2}-\frac{1}{3} M_{0}^{2} e^{-m_{0} r}}{r}-\frac{Q_{0}^{2}}{6} \frac{e^{-r \sqrt{\frac{R^{2}}{\alpha^{\prime}}-\frac{2}{\alpha^{\prime}}}}}{r}\right] \\
\text { massless exchange } \\
\text { massive exchange }
\end{gathered}
$$

Figure 1: The D1-D1 potential as a function of the distance in the transverse space (the potentials and distances are expressed in units of α^{\prime}, we fixed $R=8, g_{S}=0.2$, $V_{5} \sim 1.5^{5}$ and introduced no Wilson lines for the D1 branes)

The dangerous case (for WGC) is when the maximum is reliable in the field-theory limit

In this case, WGC is violated for $r<r_{0}$ and small black holes (for ex. D1 bound states) could be stable remnants.

Unclear if really problematic, in any case (*) is a safe condition.

Perspectives

- Swampland : stringy constraints on BSM and cosmological models. Important to test conjecture in perturbative strings with broken SUSY and effective field theory models.
- In superstrings, we checked interactions between non-BPS branes with several charges. There is a relation:
- Repulsion
- Attraction
absence of open string (charged) tachyons tachyons at short brane separation
- Interesting to understand the connexion brane repulsion/ interaction and black holes
- We started to investigate WGC in strings with broken SUSY. We find short-range attraction, but long-range repulsion, since

$$
T_{1, e f f}<Q_{1, e f f}
$$

Interesting further possible checks.

Thank You!

