A Tower WGC from IR consistency

Stefano Andriolo

based on SA, D. Junghans, T. Noumi, G. Shiu 1802.04287

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

String Pheno '19, CERN, 27th June 2019

Outline

Introduction and review

- Landscape and Swampland
- WGC and CHC

Infrared Consistency and WGC

A stronger CHC

Consistency under dimensional reduction

(sub-)Lattice WGC

Tower WGC

Conclusions

Recent work

Distance conjecture (see Palti's, Grimm's and Marchesano's talks)

- dS (see McAllister's and Grana's talks)
- new criteria (see Vafa's and Shiu's talks)
- WGC (see also Montero's and Heidenreich's talks)

WGC & CHC

In any consistent EFT of gauge U(1) coupled to gravity There must exist a particle (m,q) with charge-mass ratio

$$z \equiv \frac{gqM_P}{m} \ge 1$$

To avoid troubles with remnants: EBH's must decay into charged object while remaining sub-extremal

 $g(Q_{\text{ext}} - q) \le (M_{\text{ext}} - m)/M_{\text{Pl}} \le gq \ge m/M_{\text{Pl}}$

Multiple U(1)'s:

(sub-)Extremal Black holes can decay if they lie inside the Convex Hull!

Positivity bounds (IR)

An EFT with HO operators = higher derivatives corrections

Eg.
$$\mathcal{L}_{1-loop} = \frac{M_P}{2}R - \frac{F^2}{4e^2} + CF^4$$

is "IR consistent" i.e. respects:

causality (subluminal fluctuations)

analyticity of S-matrix $\mathcal{M}(s)$

(non-anal in s where particles are produced)

Positivity bounds (IR)

An EFT with HO operators = higher derivatives corrections

Eg.
$$\mathcal{L}_{1-loop} = \frac{M_P}{2}R - \frac{F^2}{4e^2} + CF^4$$

is "IR consistent" i.e. respects:

if

causality (subluminal fluctuations)

analyticity of S-matrix $\mathcal{M}(s)$

(non-anal in s where particles are produced)

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 0602178]

Causality (eg 3D)

Dualisation:

$$\mathcal{L}_1 = \frac{M_3}{2}R - \frac{(\partial\phi)^2}{2} + 4C(\partial\phi)^4 \qquad F \sim *d\phi$$

Require the speed of propagation of fluctuations $\phi = \overline{\phi} + \varphi$ is sub-luminal (in any locally flat frame η_{ab})

EOMs Fourier space dispersion relation $(\eta_{ab} + 16C \ \overline{\partial_a \phi \partial_b \phi}) \ k^a k^b = 0$ True for any bg choice

Simplest bg: constant EM field $\overline{\partial_a \phi} = w_a = (w_0, \vec{w}) = const$

$$v = \frac{k_0}{|\vec{k}|} = 1 - 8C(w_0 - \vec{w} \cdot \hat{k})^2 \longrightarrow (C > 0)$$

Analyticity - 3D/4D

Consider 4-pts photon scatterings

In the forward limit $\mathcal{M}(s,t) = 8C(s^2 + t^2 + u^2) \rightarrow \mathcal{M}(s) = 16Cs^2$ $t \rightarrow 0$

We can extract C from

Analyticity - 3D/4D

from

Consider 4-pts photon scatterings

The S-matrix is **analytical** along the real axis $|s| < s_0$, up to the lowest energy where on-shell intermediate states are created (= red discontinuities)

[Cheung-Remmen '14]

YES! *

* caveats...

Suppose the 1-loop EFT is obtained by integrating out charged matter

Setup (3d)

EFT multiple scalar/fermions charged under multiple U(1)'s

$$\Gamma = \int d^3x \sqrt{-g} \left[\frac{M_3}{2} R - \frac{1}{4} \sum_i F_i^2 \right] + \Gamma_{s/f} + H.O.$$

$$\Gamma_{\rm s} = \int d^3x \sqrt{-g} \sum_a \left(-|D_\mu \phi_a|^2 - m_a^2 |\phi_a|^2 \right)$$

$$\Gamma_{\rm f} = \int d^3x \sqrt{-g} \sum_a \bar{\psi}_a (-\Gamma^\mu D_\mu - m_a) \psi_a$$

$$H.O. = \sum_{ijkl} c_{ijkl} (F_i \cdot F_j) (F_k \cdot F_l)$$

UV-Physics dof (kept generic/unknown)

Setup (3d)

EFT multiple scalar/fermions charged under multiple U(1)'s

$$\Gamma = \int d^3x \sqrt{-g} \left[\frac{M_3}{2} R - \frac{1}{4} \sum_i F_i^2 \right] + \Gamma_{s/f} + \frac{H.O.}{\mathbf{UV}}$$

$$\Gamma_{\rm s} = \int d^3x \sqrt{-g} \sum_a \left(-|D_\mu \phi_a|^2 - m_a^2 |\phi_a|^2 \right)$$

$$\Gamma_{\rm f} = \int d^3x \sqrt{-g} \sum_a \bar{\psi}_a (-\Gamma^\mu D_\mu - m_a) \psi_a$$

$$H.O. = \sum_{ijkl} c_{ijkl} (F_i \cdot F_j) (F_k \cdot F_l)$$

UV-Physics dof (kept generic/unknown)

"Elephant in the room"...

Nonetheless, there is a regime where we can extract interesting results!

Setup (3d)

Integrating out matter, we obtain

$$\min(m_{a}) \qquad \Gamma_{1} = \int d^{3}x \sqrt{-g} \left[\frac{M_{3}}{2}R - \frac{1}{4} \sum_{i,j} \delta_{ij}F_{i} \cdot F_{j} + \sum_{i,j,k,l} C_{ijkl}(F_{i} \cdot F_{j})(F_{k} \cdot F_{l}) \right]$$

$$C_{ijkl}^{s} = c_{ijkl} + \sum_{a} \frac{1}{1920\pi |m_{a}|M_{3}^{2}} \left[\frac{7}{8} z_{ai} z_{aj} z_{ak} z_{al} + \frac{3}{2} z_{ai} z_{aj} \delta_{kl} - z_{ai} z_{ak} \delta_{jl} + \frac{1}{2} \delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} \right]$$

$$C_{ijkl}^{f} = c_{ijkl} + \sum_{a} \frac{1}{1920\pi |m_{a}|M_{3}^{2}} \left[z_{ai} z_{aj} z_{ak} z_{al} + z_{ai} z_{aj} \delta_{kl} - \frac{3}{2} z_{ai} z_{ak} \delta_{jl} - \frac{1}{2} \delta_{ij} \delta_{kl} + \frac{3}{2} \delta_{ik} \delta_{jl} \right]$$

$$Q_{g} \qquad Q_{g} \qquad Q_{g$$

Implications:

- **single particle**, charged under **single U(1)**

$$C > 0 \begin{cases} \text{scalar:} \quad z^2 \left(z^2 + \frac{4}{7} \right) + \mathcal{O}_s(z^0) > 0 \\ \\ \text{fermion:} \quad z^2 \left(z^2 - \frac{1}{2} \right) + \mathcal{O}_f(z^0) > 0 \end{cases}$$

Implications:

- **single particle**, charged under **single U(1)**

$$C > 0 \begin{cases} \text{scalar:} \quad z^2 \left(z^2 + \frac{4}{7} \right) + \mathcal{O}_s(z^0) > 0 & \longrightarrow & \text{trivial} \\ \\ \text{fermion:} \quad z^2 \left(z^2 - \frac{1}{2} \right) + \mathcal{O}_f(z^0) > 0 & \longrightarrow & z > \frac{1}{\sqrt{2}} \\ & \text{WGC!} \end{cases}$$

$$\mathcal{O}(z^{0}) \sim \underbrace{\operatorname{form}^{\mathsf{In the regime where } \mathcal{O}(z^{0}) \text{ is negligible}}_{\mathsf{In the regime where } \mathcal{O}(z^{0}) \sim \bullet 0$$

Implications:

- more particles, multiple U(1)'s:

Several positivity conditions on

 C_{ijkl}

Strongest positivity conditions are given by mixed scatterings

Presence of **bifundamentals** is crucial for IR consistency

A stronger CHC (3d/4d)

Dimensional reduction

Is the WGC **consistent** under dimensional reduction ? [B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

D dim: 1 particle, single U(1) $z_0 \ge 1$ WGC \checkmark

 $S^1_{(r)}$

D-1 dim: KK tower, U(1)xU(1)_{KK} WGC (CHC) ? **NOT** always! (problem $r \to 0$ limit)

Unless...

Lattice WGC

A super-extremal particle z>1 should exist for every charge in the charge lattice

Using **positivity bounds**?

Same problem in D-1 for r
ightarrow 0

$$\vec{Z}_{(n)} = (z_F, z_{KK}) = \left(\frac{q}{\sqrt{m^2 + n^2/r^2}}, \frac{n}{\sqrt{m^2 r^2 + n^2}}\right)$$

- lowest mode (n=0):
$$(z_F, z_{KK}) = (q/m, 0)$$

- KK modes (n≠0):
$$(z_F, z_{KK}) \sim (0, 1)$$

Absence of bifundamentals

IR inconsistent

Solution...

Tower-WGC*

Replace the 4D field with a **tower** of 4D fields Φ_l charged under U(1) with masses and charges (m_l, q_l) s.t. **bifundamental** contributions (at any r) saves IR cons.

(*in absence of fermions)

Replace the 4D field with a **tower** of 4D fields Φ_l charged under U(1) with masses and charges (m_l, q_l) s.t. **bifundamental** contributions (at any r) saves IR cons.

(*in absence of fermions)

Tower-WGC*

there may be bifundamentals at small radii: IR-OK

Many other possibilities...

Tower-WGC

Replace the 4D field with a **tower** of 4D fields Φ_l charged under U(1) with masses and charges (m_l, q_l) s.t. bifundamental contributions (at any r) saves IR cons.

more precisely:

- There must exist particles with mass near the cut-off $m_l \lesssim \Lambda$
- Such particles must have $z_l \gtrsim \mathcal{O}(1)$
- In case the lightest particle has mass $m \ll r^{-1}, \Lambda$ then the number of particles in the tower is *at least* of order $(mr)^{-1}$

- TWGC is weaker than the LWGC

no counterexample + agreement with swampland distance conjecture

Relation IR consistency - WGC ?

Clear connection when **UV contribution** to the EFT in a certain regime. Possibly, compute UV contributions and check...

Existence of **bifundamentals** is crucial for multiple U(1)'s:

stronger CHC

under KK reduction: necessity of a tower of particles in the parent D-dimensional theory **(TWGC)**

TWGC weaker than (sub-)LWGC and agrees with literature

