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The success of single-field inflation

  
  




 Solves horizon & flatness problem

 Provides seeds for structure formation



 

Consistent with CMB data

 - Small but non-zero spectral tilt
 - Small tensor-to-scalar ratio
 - Small primordial non-Gaussianity
 - Small isocurvature perturbations  




  
  
  

(Planck collaboration, 2018)

(Guth, Linde, Starobinksy, Mukhanov)
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  
 UV embeddings of inflation typically contain multiple scalar fields living on a 
 curved field space 


 → they may interact with the inflaton (stabilize them all?)








 Recent “swampland conjectures” suggest that inflation takes place in a small patch 
of field space (Ooguri & Vafa, 2007 Ooguri, Palti, Shiu & Vafa 2018)



 → curved trajectories  ( Achucarro & Palma, 2018)



  





  
  
  

Theoretical challenges
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A simple multi-field framework

  
  


  
 It’s desirable to have a simple framework that can deal with multi-field 

inflation with curved trajectories & curved field spaces






  To address questions like


 (1) What symmetries may protect the inflationary dynamics?   


 (2) What’s the role of the field space geometry? (See also Guidetti’s, Anguelova’s, Cespedes’ talks)


(3) What are the signatures of new physics?   


  





  
  
  
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A lightning review of multi-field effects

  
  


  
1)
2)
3)
4) (1)  Primordial non-Gaussianities
5)
6)
 (2)  Isocurvature perturbations


  





  
  
  
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Primordial non-Gaussianities

  
  


 Consider e.g. extra fields during inflation

Interactions = mode coupling  







Correlation between different modes  







                                  
Bispectrum = FT three-point correlation 





  
  
  

A long wave modulates the 
amplitude of a short wave

non-zero bispectrum (non-Gaussian statistics)
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Why do we care about primordial non-Gaussianities?

  
  


 PNG is a smoking gun for single field

All canonical single field models of inflation can be ruled out by detecting a 
violation of the single field consistency relation







 PNG is a probe of fundamental physics
 Derivative interactions / strong interactions with heavy fields / multiple light fields /

cosmological collider physics / alternatives to inflation / ...




  
  
  

(Maldacena, 2002
 Creminelli, Zaldarriaga, 2004)
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Isocurvature perturbations

  
  


 Curvature = adiabatic perturbations 
Local expansion of homogeneous background (time shift)
Composition universe the same, but overall number density varies

Single field inflation creates adiabatic perturbations that are conserved on SH scales 
  







  
  
  

photons

matter

(Weinberg, 2003)
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Isocurvature perturbations

  
  


 Isocurvature = non-adiabatic perturbations 
NOT-adiabatic
Composition universe is not the same, relative ratio of species varies

Multi-field inflation is generically expected to produce large 
isocurvature pt* and fNL ~ O(1) primordial non-Gaussianities

*Except when reheating washes it out completely   







  
  
  

photons

matter

(Alvarez et al, 2014)
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Inflation with light coupled scalars

  


















  
  




     

BAD because:
● They source curvature perturbations  → large non-Gaussianities

● Light scalars don't decay  → isocurvature pt 



13/27Yvette Welling – String Pheno 2019

GOOD because: 
● They efficiently source curvature perturbations  → smaller nG

● Light scalars don't decay   → dynamically suppressed

These systems are as multi-field as can be 
But look a lot like single field !

Inflation with light coupled scalars
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Simplest extension of the single field EFT

  


















  
  




     

Isocurvature mass

Curvature perturbation
Isocurvature perturbation

Efficiency of 
interaction

 (Single field)

 (Two field)
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Simplest extension of the single field EFT

  


















  
  




     How to realize this explicitly?
Phenomenology?
What are the symmetries protecting the coefficients?

Bottom up simplest: static coefficients

Efficient coupling Small mass

 (Single field)

 (Two field)
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Main obstacle: no potential gradient flow 

 Inflationary trajectories generically do not follow the potential gradient flow




     


























  → The potential does not reflect the symmetries of the perturbations
  
  
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Orbital Inflation

 Idea: consider inflationary models that attract to the Hubble gradient flow
  
  
  




 + align this with an isometry of field space, e.g. ‘angular’ θ direction
  
  
  
  
  






 This gives a set of possible Hubble parameters  family of potentials→
that admit a constant coupling ω  

  
  

Axion, dilaton 

 To appear soon in (Achúcarro, YW)

 (Generalization of single-field Hamilton-Jacobi,
 Salopek & Bond 1990)
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Exact solution

 Remarkably, the background attractor is an exact solution










The Hubble parameter also determines the properties of the perturbations




e.g. if 














  
  
  

Determines ε, η, .. Determines the couplings with
the isocurvature perturbations

 To appear soon in (Achúcarro, YW)
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Applications of Orbital Inflation





 (1) Playground for Quasi-Single-Field Inflation  (Chen, Wang, 2010)






 (2) We can exactly solve the phenomenology of Orbital Inflation in the limit of 
small isocurvature mass and a small radius of curvature





(3) We gain new insights on the symmetries that protect the inflationary dynamics





















  
  
  
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Applications of Orbital Inflation





 (1) Playground for Quasi-Single-Field inflation  (Chen, Wang, 2010)






 (2) We can exactly solve the phenomenology of Orbital Inflation in the limit of small 
isocurvature mass and a small radius of curvature





(3) We gain new insights on the symmetries that protect the inflationary dynamics





















  
  
  
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Phenomenology for small isocurvature mass

  
  
  
  
  
  
  
  
  
















ε: starting point
λ: sets mass. Angle in which 

  it vans out in (ns, r) plane
κ-1: sets efficiency interaction. 

  Reduction r
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Phenomenology for small isocurvature mass

  
  
  
  
  
  
  
  
  
















“Single clock” regime
isocurvature pt suppressed
but consistency relation violated!
    

ε: starting point
λ: sets mass. Angle in which 

  it vans out in (ns, r) plane
κ-1: sets efficiency interaction. 

  Reduction r

(Achucarro, Atal, Germani, Palma) 

In massless limit λ = 0
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Phenomenology for small isocurvature mass

  
  
  
  
  
  
  
  
  
















“Single clock” regime
isocurvature pt suppressed
but consistency relation violated!
    

ε: starting point
λ: sets mass. Angle in which 

  it vans out in (ns, r) plane
κ-1: sets efficiency interaction. 

  Reduction r

Small if λ, α are suppressed!

 To appear soon in (Achúcarro, YW)
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Scaling similarity  massless fields↔



Inspecting the massless case H = H(θ) in more detail 










 It has a scaling similarity !    Relating BG solutions





                  Perturbations














  
  
  

Massless isocurvature pt
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

We can generalize this to the family of potentials












 Same scaling similarity   → massless perturbation AND small self-interactions











 In multi-field set-ups fNL becomes slow-roll suppressed if:
    - The isocurvature pt are responsible for the final curvature pt
    - The isocurvature self interactions are small


  
  
  

Scaling similarity  massless fields↔

(If the radial field has a 
sufficiently small velocity)

 To appear soon in (Achúcarro, Palma, Wang, YW)
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Conclusions





 Orbital Inflation: a class of exact multi-field attractors in curved field spaces and 
with curved trajectories







 In the limit of small isocurvature self interactions and a small radius of curvature 
 Orbital Inflation mimics the phenomenology of single-field inflation 

A scaling similarity can explain the above properties 

Successful inflation doesn’t necessarily require to stabilize all light fields!!






  












  

Thank you!
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Old slides

  
   
  
  
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Example: a potential which forces the inflaton to 
turn at constant radius
 

Expand around bg: derivative coupling proportional to turn rate

This happens whenever     background trajectory        geodesic 

Derivative interactions 
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General quadratic action:

The coupling constant is proportional to the turn rate ω

The effective mass μ is given by 

Derivative interactions 
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