Severin Lüst
CEA Saclay and École Polytechnique

Uplifting Runaways

with I. Bena, E. Dudas, and M. Graña [arXiv:1809.06861]

June 27, 2019
String Phenomenology 2019, CERN

de Sitter vacua in string theory

Three-step procedure [Kachru, Kallosh, Linde, Trivedi '03]:

1. warped IIB with CS-moduli stabilized by three-form fluxes including a region with strong warping [Giddings, Kachru, Polchinski '01] described by the Klebanov Strassler throat [Klebanov, Strassler '00] \rightarrow large hierarchy of scales
2. Stabilize Kähler moduli by non-perturbative effects \rightarrow supersymmetric AdS-vacuum
3. Supersymmetry breaking by an $\overline{D 3}$-brane at the bottom of the throat \rightarrow exponentially suppressed uplift to dS due to strong warping
(See also many other talks during this conference.)

de Sitter vacua in string theory

Three-step procedure [Kachru, Kallosh, Linde, Trivedi '03]:

1. warped IIB with CS-moduli stabilized by three-form fluxes including a region with strong warping [Giddings, Kachru, Polchinski '01] described by the Klebanov Strassler throat [Klebanov, Strassler '00] \rightarrow large hierarchy of scales
2. Stabilize Kähler moduli by non-perturbative effects \rightarrow supersymmetric AdS-vacuum
3. Supersymmetry breaking by an $\overline{D 3}$-brane at the bottom of the throat \rightarrow exponentially suppressed uplift to dS due to strong warping
(See also many other talks during this conference.)

Warped CY

- Metric: $\mathrm{d} s_{10}^{2}=e^{2 A} d s_{4}^{2}+e^{-2 A} d s_{C Y_{3}}^{2}$
- Fluxes fix the sizes of the 3-cycles: $\int_{A_{l}} F_{3}=M^{\prime}, \int_{B^{\prime}} H_{3}=K_{l}$

- Choose a configuration such that one cycle is exponentially large.
\rightarrow Klebanov-Strassler throat.

Deformed conifold

- In the region of high warping, the six-dimensional geometry is given by the deformed conifold.
- embedding of the deformed conifold into \mathbb{C}^{4} :

$$
\sum_{a=1}^{4} z_{a}^{4}=S
$$

- Replace the singularity of the conifold $(S=0)$ by a S^{3} of size $|S|$

[Candelas, Ossa '89]
- S is a complex structure modulus of the deformed conifold.

Potential for S

- Fluxes M and K along the two three-cycles of the conifold generate a potential $V_{K S}(S)$ [Douglas, Shelton, Torroba '07, '08]:

- (Supersymmetric) minimum at $s_{K S}=\Lambda_{0}^{3} \exp \left(-\frac{2 \pi K}{g_{s} M}\right)$.
- Relative warp factor: $\Lambda_{0} / \Lambda_{I R} \sim\left|s_{K S}\right|^{\frac{1}{3}}$.
\rightarrow Large hierarchy for suitable values of K, M, and g_{s} [Giddings et al. '01].

Mass of S

- The mass of S at the minimum $s_{K S}$ can be computed by

$$
\left.m_{S}^{2} \equiv \frac{1}{M_{p l}^{2}} G^{S \bar{S}} \partial_{S} \partial_{\bar{S}} V\right|_{S=s_{K S}}
$$

- Including the effects of the warping we find:

$$
m_{S}^{2} \sim \frac{s_{K S}^{2 / 3}}{\alpha^{\prime 2}}
$$

(c.f. [Blumenhagen, Herschmann, Wolf '16] for m_{S}^{2} without warping)
\rightarrow If $s_{K S}$ is exponentially small, S becomes exponentially light.
$\rightarrow S$ cannot be integrated out before uplifting with an anti-brane.
Comparison with Kähler moduli masses: [Blumenhagen, Kläwer, Schlechter '19]

D3-brane in the KS throat

- Place an anti-D3 brane at the bottom of the throat

- Positive contribution to the energy \rightarrow uplift to de Sitter

D3-brane in the KS throat

- The $\overline{D 3}$-brane gives a contribution to the potential:

$$
V_{\overline{D 3}}(S) \propto e^{4 A} \propto \frac{|S|^{4 / 3}}{\left(\alpha^{\prime} g_{s} M\right)^{2}}
$$

with $e^{4 A}$ the warp factor of the Klebanov-Strassler solution.

- Plot of the potential:

(dotted lines represent the KS potential and their superposition)

Stability with one $\overline{D 3}$-brane

- A stable minimum of $V_{K S}+V_{\overline{D 3}}$ with $S>0$ exists iff

$$
g_{s} M^{2}>M_{\min }^{2} \quad \text { with } \quad M_{\min } \approx 12
$$

(see also [Blumenhagen, Kläwer, Schlechter '19])

- Superposition of the potentials:

Implications on the maximal hierarchy

- Warping creates a hierarchy of scales

$$
h=3 \ln \frac{\Lambda_{0}}{\Lambda_{I R}}=\frac{2 \pi K}{g_{S} M}
$$

- Tadpole cancellation:

$$
M^{\prime} K_{I}+Q_{3}^{l o c}=0,
$$

where $Q_{3}^{\text {loc }}$ is the D3-charge of localized sources.

- Stability of the KS throat + tadpole cancellation:

$$
h=2 \pi \frac{M K}{g_{s} M^{2}}<2 \pi \frac{\left|Q_{3}^{\text {loc }}\right|}{M_{\min }^{2}} \approx \frac{\left|Q_{3}^{\text {loc }}\right|}{23}
$$

Tadpole cancellation in IIB

- For CY orientifolds with O3-planes and D3-branes:

$$
Q_{3}^{l o c}=N_{D 3}-\frac{1}{4} N_{03}
$$

- Largest number of O3-planes: $T^{6} / \mathbb{Z}_{2}: Q_{3}^{\text {loc }} \leq 32$
\rightarrow No large hierarchy possible.
- O7-planes and D7-branes:

$$
Q_{3}^{l o c}=\frac{1}{24} \chi(D 7)+\frac{1}{6} \chi(O 7)-(\text { gauge })
$$

- χ : Euler number of the 4-cycles wrapped by the D7s/O7s.
\rightarrow Large tadpole possible, but D7-moduli need to be stabilized.

Tadpole cancellation in F-theory

- Tadpole cancelation for F-theory on a Calabi-Yau four-fold CY_{4} with four-form flux G :

$$
N_{D 3}+\frac{1}{2} \int G \wedge G=\frac{\chi\left(C Y_{4}\right)}{24}
$$

- $\chi\left(\mathrm{CY}_{4}\right)$: Euler number of the $\mathrm{CY} \rightarrow$ can be very large (largest know example [Klemm et al. '97]: $\chi=1820448=24 \cdot 75852$)
- But: Large χ implies a lot of moduli:

$$
\chi\left(C Y_{4}\right)=6\left(8+h^{1,1}+h^{3,1}-h^{2,1}\right)
$$

- $h^{3,1}$: complex structure of $C Y_{4} \rightarrow$ must be stabilized by flux:

$$
\int G \wedge G=\mathcal{O}\left(h^{3,1}\right) ?
$$

Conclusions

- With a large hierarchy the KS-modulus becomes exponentially light.
- One $\overline{D 3}$ makes a Klebanov-Strassler throat unstable unless $g_{s}^{1 / 2} M>12$.
- Due to tadpole-cancellation: Constraints on the hierarchy.

Conclusions

- With a large hierarchy the KS-modulus becomes exponentially light.
- One $\overline{D 3}$ makes a Klebanov-Strassler throat unstable unless $g_{s}^{1 / 2} M>12$.
- Due to tadpole-cancellation: Constraints on the hierarchy.

Thank You!

