Thraxions: Ultralight Throat Axions based on JHEP04(2019)158, arXiv:1812.03999 A. Hebecker / S. Leonhardt / J. Moritz / A. Westphal

Sascha Leonhardt (Heidelberg)

String Phenomenology 2019

June 27, 2019

Setup: (Compact) Klebanov-Strassler solution

[Klebanov, Strassler '00] [Giddings, Kachru, Polchinski '02]

- IIB solution on $\mathbb{R}^{1,3} \times_w def.cfd.$
- internal space: 'KS throat'
- deformation parameter z: c.s.m.
 - |z| = volume of 3-sphere
 - $\varphi = \arg z =$ 'orientation' of throat
- c.s.m. *z* stabilized by *M* and *K*
- normalize warp factor to 1 in UV / bulk CY, s.t. $w_{\rm IR}^3 \propto |z| \ll 1$ $\left(w(r) = e^{A(r)}\right)$

Idea: Axion Monodromy in Throats

- consider 'axions' $\int_{S^2} C_2$, $\int_{S^2} B_2$ on background with $S^2 = \partial \mathcal{B}$ \Rightarrow manifest monodromy from flux energy density of $\int_{\mathcal{B}} F_3 = \int_{S^2} C_2$
- backreacted potential? surprising result in throat:

finite monodromy, very small potential

of scale $\Lambda \sim e^{-S_{\rm eff}} < e^{-M_{\rm P}/f_{\rm eff}}$

 $\int_{C_2} C_2$

S2's

Local Throat Physics: Monodromies

(F-term) axion monodromy [Silverstein, Westphal '08], [McAllister, Silverstein, Westphal '08] [Marchesano, Shiu, Uranga '14], [Hebecker, Kraus, Witkowski '14] [Hebecker, Moritz, Westphal, Witkowski '16]

• F-term axion monodromy from IR fluxes $\int_{\mathcal{B}} F_3 = \int_{S_{UV}^2} C_2 \equiv (2\pi\alpha')c$, rigid throat background expectation and result

 $V_{\rm flux}(c) \sim w_{\rm IR}^4 c^2$

- UV end of the \mathcal{B} -cycle?
 - \rightarrow double throat: IR fluxes on both sides for control no net flux added in compact double throat \Rightarrow flux and antiflux
- · geometry: simultaneous deformation of two conical singularities
 - \rightarrow one c.s.m. $z = z_1 = z_2$ and shared \mathcal{B} -cycle for both throats

 Z_2

 Z_1

Local Throat Physics: Backreaction via local SUSY restoration

• *z* locally stabilized by F-terms with additional F_3 -flux

 $\arg z = \varphi = \frac{c}{M}$

• independent local backreaction of (anti)fluxes on $\mathcal{B}_{1,2}$

 $\varphi_{1,2} = \pm \frac{c}{M}$

deformation away from c.s.m. space z ≡ z₁ ≡ z₂ ?!
there must be potential enforcing z₁ = z₂ !

Thraxions: Potential from $\varphi_1 \neq \varphi_2$

- deformation asymptotically *almost* not visible
 - \rightarrow *approximate U*(1)-symmetry parametrized by φ
- potential from gluing together $\varphi_1 \neq \varphi_2$ in *almost* symmetric region

$$V_{\mathcal{U}(1)}(\varphi_1 - \varphi_2) = \Lambda_{\mathcal{U}(1)}|_{\mathrm{UV}} \left(1 - \cos(\varphi_1 - \varphi_2)\right)$$

- 10d action: $\Lambda_{U(1)}|_{UV} \propto W_{IR}^6$ ($\ll V_{flux}$!)
- $\Rightarrow \text{ finite monodromy for 'thraxion' } c, \text{ decay constant enhanced by } M$ $V_{\text{eff}}(c) = w_{\text{IR}}^6 \Lambda (1 \cos(c/M))$

Thraxions: Superpotential proposal (for complexified thraxion)

• independent throats + potential from gluing enforced by Lagrange multiplier G gives

$$W = W_{\text{GVW}}(z_1) + W_{\text{GVW}}(z_2) + \frac{G}{2\pi}(z_1 - z_2)$$

- $\left(\pm \frac{G}{2\pi} z_i\right)$ can be absorbed in $W_{\text{GVW}}(z_i)$ as additional G_3 -(anti)flux term on \mathcal{B}_i -cycle!
- promote $G = (c \tau b)$ to dynamical field
- Kähler potential given by resolved side (kinetic term from UV geometry)

[Grimm, Louis '04]

• integrating out along mass hierarchy gives $W_{\text{eff}}(G)$ with

 $V_{\rm eff} \supset w_{\rm IR}^6 \Lambda (1 - \cos(c/M))$ (+ non-periodic potential for *b*)

Thraxions: Drifting monodromies

• superpotential allows for simple generalization to multi throats

 $W_{\rm eff}(G) \approx w_{\rm IR}^3 \sum_{k=1}^n \Lambda_i \exp(i G/M_k)$

 M_k stabilizes *k*-th throat (subject to topology)

- each throat *k* backreacts with different orientation c/M_k original vacuum reached only after $f_{\text{eff}} = \text{LCM}(M_k) f_c$
- example: thraxion on quintic orientifold

 $\frac{16}{2}$ conical sing. deformed by fluxes $M, M+1, -M, -M-1, \dots$

 $f_{\rm eff} \approx M^2 f_c$, $f_{\rm mod} \approx M f_c$

Conclusions

- thraxion present in generic IIB CY compactification (that can develop multiple conical sing.)
- · flux-enhanced (super-)Planckian decay constant with approximately Planckian modulation
- interpreting as instanton induced $W_{\rm eff} \propto w_{\rm IR}^3 \propto \exp(-S_{\rm eff})$, have $S_{\rm eff} \cdot f_{\rm eff}/q > M_{\rm P}$ parametrically
- ED1's on S^2 coupling to C_2 have charge $q = f_{\text{eff}}/\Pi_{\text{ED1}} = \text{LCM}(M_k)$
 - \rightarrow sLWGC satisfied with very coarse sublattice (quintic example above: $110 \mathbb{Z} \subset \mathbb{Z}$)
- classical process that connects flux vacua at $\varphi = 2\pi \frac{P}{M}$, $P \in \mathbb{Z}_{2M}$, dual to distinct vacua of KS gauge theory (due to gaugino condensates)
- saxion $b = \int_{S^2} B_2$ governs relative throat lengths $\propto \frac{|z_1|}{|z_2|}$ of multi throat geometries \rightarrow only weakly stabilized at a scale w_{IR}^6 (perturbatively)