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Overview

We investigated massive type IIA flux compactifications with different
ingredients for the possibility of a realistic setup for dS vacua.

In order to trust a dS solution in the SUGRA limit we need large
volume and weak coupling.

Solutions often have remaining scaling symmetries that, in
principle, allow to move a solution from large coupling/small volume
to a trustable regime.

Different ingredients, like D-branes, O-planes, KK-monopoles,
etc., have different scaling behavior.

Motivation

Lately there has been ample discussion about dS Vacua in String Theory.
(Danielsson, Van Riet: arXiv:1804.01120; Obied et.al.: arXiv:1806.08362)

Based on arXiv:1811.07880 with Andreas Banlaki, Abhishek
Chowdhury, Timm Wrase and on similar work by Daniel Junghans in
arXiv:1811.06990.
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dS Vacua from String Theory

It is notoriously difficult to get dS vacua from String Theory.

Best known construction: KKLT (Kachru et.al.:

arXiv:hep-th/0301240). While well established there is no general
consensus that these are completely consistent.

Flux compactifications of massive type IIA don’t allow for dS vacua
(Maldacena, Núñez: arXiv:hep-th/0007018) unless we include
O6-planes.

Even more no-go’s exist! Wrase, Zagermann: arXiv:1003.0029;

Haque et.al.: arXiv:0810.5328; Andriot Bl̊abäck: arXiv:1609.00385;

Andriot: arXiv:1807.09698

→ All can be evaded!

Solutions often have strong coupling and small volume and thus
should receive α′ and/or string loop corrections.

Question

Can we in principle find parametrically controlled solutions of massive
type IIA compactifications at weak coupling and large volume?
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The Scalar Potential

The full scalar potential is rather complicated but for the slice of the
string coupling eφ and internal volume V we can write it down using:

ρ = V
1
3
6 and τ = e−φ

√
V6 ,

we get schematically:

V (ρ, τ) =
AH
ρ3τ2

+
∑

p=0,2,4,6

AFp
ρp−3τ4

− Asources
τ3

+
AR6

ρτ2
.

AH arises from integrating the NSNS field strength |H|2.

AFp corresponds to the RR-fluxes |Fp|2.

Asources includes contributions from D6, D6 and O6. Asources
depends on them like:

Asources ∝ 2NO6 −ND6 −ND6.

AR6 ∝ −R6 comes from internal Ricci scalar.
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A Maldacena-Núñez Type No-Go

In the case where NO6 = 0 or 2NO6 −ND6 −ND6 < 0 we minimize
w.r.t. τ :

∂τV = −2
AH
ρ3τ3

− 4
∑

p=0,2,4,6

AFp
ρp−3τ5

− 3
|Asources|

τ4
− 2

AR6

ρτ3

!
= 0.

For negatively curved manifolds AR6
∝ −R6 > 0 and there is no

solution. For positively curved manifolds we find a dS no-go (Maldacena,

Núñez: arXiv:hep-th/0007018):

V |min = −
∑

p=0,2,4,6

AFp
ρp−3τ4

− 1

2

|Asources|
τ3

< 0.

⇒ No dS solutions exist for ND6 +ND6 > 2NO6.

More No-Go’s

For de Sitter it is always required that AR6 < 0 and AF0 6= 0!

Hertzberg et.al.: arXiv:0711.2512; Flauger et.al.: arXiv:0812.3886
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Controlled SUSY AdS

In arXiv:hep-th/0505160 DeWolfe et.al. showed that F4 flux can be
made arbitrary large. If all F4 fluxes (f4) are large one finds a SUSY AdS

solution with weak string couling e−φ ∝ (f4)
3
4 and large volume

V ∝ (f4)
3
2 .

In our case (AR6
= 0, AF4

= aF4
(f4)2, ρ = ρ̃(f4)

1
2 , τ = τ̃(f4)

3
2 ):

V (ρ, τ) =
1

(f4)
9
2

(
AH
ρ̃3τ̃2

+
AF0

ρ̃−3τ̃4
+
aF4

ρ̃τ̃4
− Asources

τ̃3

)
+

1

(f4)
11
2

AF2

ρ̃−1τ̃4
+

1

(f4)
15
2

AF6

ρ̃3τ̃4

⇒ F2 and F6 become irrelevant in this limit.

All terms necessary to stabilize moduli survive.

NO6, H and F0 can be small and we still have SUSY AdS.

Non-vanishing curvature will prohibit the large F4 limit.
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Controlled dS Vacua

Can we find a limit with dS vacua for ρ, τ � 1?

The large F4 limit does not work due to non-vanishing curvature.
⇒ We need to investigate other limits of the scalar potential

V (ρ, τ) =
AH
ρ3τ2

+
∑

p=0,2,4,6

AFp
ρp−3τ4

− Asources
τ3

+
AR6

ρτ2
.

Let’s make both moduli simultaneously large: ρ ∝ λcρ , τ ∝ λcτ , λ→∞.

V (ρ, τ) =
AH

λ3cρ+4cτ
+

∑
p=0,2,4,6

AFp
λ(p−3)cρ+4cτ

− Asources
λ3cτ

+
AR6

λcρ+2cτ
.
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Controlled dS Vacua

Can we find a limit with dS vacua for ρ, τ � 1?

V (ρ, τ) =
AH

λ3cρ+4cτ
+

∑
p=0,2,4,6

AFp
λ(p−3)cρ+4cτ

− Asources
λ3cτ

+
AR6

λcρ+2cτ
.

In the λ→∞ limit, with fixed Asources, AF0
and AR6

, we find, in order
to have these terms scale the same:

3cτ = 4cτ − 3cρ = 2cτ + cρ .

Only solution: cτ = cρ = 0. Volume and dilation do not scale!

⇒ No dS vacua at parametically large volume and weak string coupling
for Asources, AF0 and AR6 fixed
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Controlled dS Vacua - Scaling Fluxes/Sources

Scaling the flux/source terms in the potential might allow for dS.

Terms in the scalar potential are quadratic in flux quanta (Herraez

et.al.: arXiv:1802.05771).

Exception: Asources ∝ −2NO6 +ND6 +ND6.

The tadpole condition reads schematically:

√
2

∫
(ω · F2 + F0H) = −2NO6 +ND6 +ND6 ,

meaning that, since NO6 is fixed by a particular orbifold projection, the
fluxes cannot become arbitrary large.

There is a loophole if the two terms on the left hand side almost
cancel, even if they are very large!
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Controlled dS Vacua - Scaling Fluxes/Sources

In our scalar potential:

V (ρ, τ) =
AH
ρ3τ2

+
∑

p=0,2,4,6

AFp
ρp−3τ4

− Asources
τ3

+
AR6

ρτ2
,

we now also let AH ∝ λcH , AFp ∝ λcFp and AR6
∝ λcR6 and still require

that the terms of Asources, AR6
and AF0

in V scale the same.

There is still no solution for dS vacua in this case!

Since the fluxes are bound from below the solution from this case implies
that the volume has to shrink in the scaling limit.
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Controlled dS Vacua - Scaling Fluxes/Sources

What if we allow for more O6-planes?

In simple compactifications this number is usually small and fixed but one
can imagine compactifications where the number could be large.
Letting Asources ∝ λcs we find from the scalar potential

V (ρ, τ) =
AH
ρ3τ2

+
∑

p=0,2,4,6

AFp
ρp−3τ4

− Asources
τ3

+
AR6

ρτ2

⇒ −3cρ + 4cτ − cF0 = 3cτ − cs = cρ + 2cτ − cR6

and from the tadpole condition
√

2
∫

(ω · F2 + F0 ·H) =
−2NO6 +ND6 +ND6 we get

1

2
(cR6

+ cF2
) =

1

2
(cF0

+ cH) = cs .

This can be solved!
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Controlled dS Vacua - Scaling Fluxes/Sources

The volume and string coupling are related to ρ and τ via

ρ = V
1
3
6 and τ = e−φ

√
V6 .

For the previous solution this leads to

V6 ∝ N3
O6 and e−φ ∝

√
NO6.

Controlled dS vacua are in principle possible for compactifications with a
large amount of O6-planes.

Note: Such compactifications are currently not know.
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Other Ingredients

There are many different ingredients one can add, for example:

KK-monopoles: VKK = AKK
ρτ2

KKO-planes: VKKO = −AKKOρτ2

NS5-branes: VNS5 = ANS5

ρ2τ2

NSO5-planes: VNSO5 = −ANSO5

ρ2τ2

Adding these will make the compactification more complicated,
introducing new backreaction effects and potential new degrees of
freedom.
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KK-monopoles

Adding KK-monopoles and their corresponding planes is trivial since they
scale like the curvature term in our scalar potential. We simply define:

ĀR6 = AR6 +AKK −AKKO .

Then our results from above apply and we require ĀR6
> 0 for dS

solutions.
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NS5-branes

NS5-branes introduce genuinely new terms into the potential (Silverstein:

arXiv:0712.1196):

V (ρ, τ) =
AH
ρ3τ2

+
∑

p=0,2,4,6

AFp
ρp−3τ4

− Asources
τ3

+
ĀR6

ρτ2
+
ANS5

ρ2τ2
− ANSO5

ρ2τ2
.

Minimizing with respect to τ leads to the relation

AH
ρ3τ2

+
ĀR6

ρτ2
+
ANS5

ρ2τ2
− ANSO5

ρ2τ2
= −2

∑
p=0,2,4,6

AFp
ρp−3τ4

+
3

2

Asources
τ3

and finally

V (ρ, τ) = −
∑

p=0,2,4,6

AFp
ρp−3τ4

+
1

2

Asources
τ3

.

The contribution from the NS5-branes is thus not relevant and we are
left with the same requirement for large NO6.
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Conclusion

Controlled AdS is possible in the large F4 scaling limit.

The same limit is not possible for dS.

Allowing different ingredients to scale does not improve this
situation.

In type IIA flux compactifications controlled dS vacua seem to be
only possible with a large number of O6-planes.
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Conclusion

Controlled AdS is possible in the large F4 scaling limit.

The same limit is not possible for dS.

Allowing different ingredients to scale does not improve this
situation.

In type IIA flux compactifications controlled dS vacua seem to be
only possible with a large number of O6-planes.

THANK YOU!
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Known No-Go Theorems

No dS vacuum for AF0 = 0:

(−ρ∂ρ−τ∂τ )V = 5
AH
ρ3τ2

+
∑

p=2,4,6

(p+1)
AFp
ρp−3τ4

−3
Asources
τ3

+3
AR6

ρτ2
≥ 3V .

For a dS extremum we would need V > 0 and ∂τV = ∂ρV = 0!
It is instructive to calculate the first slow-roll parameter ε, which can
be estimated to be:

ε =
1

2

(∂ρ̂V )2 + (∂τ̂V )2 + . . .

V 2
≥ 1

3

(
ρ∂ρV

V

)2

+
1

4

(
τ∂τV

V

)2

.

Minimizing and using our result we get

ε ≥ 9

7
.
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Known No-Go Theorems

No dS vacuum for AF0 = 0:

(−ρ∂ρ − τ∂τ )V ≥ 3V and ε ≥ 9

7
.

For a dS extremum we would need V > 0 and ∂τV = ∂ρV = 0!

For AR6 ≤ 0 there exists an analogue theorem and we find via a
similar calculation:

(−ρ∂ρ − 3τ∂τ )V ≥ 9V,

and, for the slow-roll parameter

ε ≥ 27

13
.

We always require AF0 > 0 and AR6 < 0 for dS vacua!
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F2, F6, the tadpole condition and curvature

F2 and F6 do affect the values of B2 and C3 axions but are not relevant
for moduli stabilization.

NO6, H and F0 are tied together via the tadpole condition

√
2

∫
ΣK

d(dC1+F0B) =
√

2

∫
ΣK

F0H = (−2NO6 +ND6 +ND6)|
wrapped on ΣK

For R6 6= 0 we find:

V (ρ, τ) =
1

(f4)
7
2

AR6

ρ̃τ̃2
+

1

(f4)
9
2

(
AH
ρ̃3τ̃2

+
AF0

ρ̃−3τ̃4
+
aF4

ρ̃τ̃4
− Asources

τ̃3

)
+

1

(f4)
11
2

AF2

ρ̃−1τ̃4
+

1

(f4)
15
2

AF6

ρ̃3τ̃4
.

The leading term is now only the curvature which leads to a runaway for
τ̃ and ρ̃.
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Vanishing Mass in Type IIA

In principle it seems like a large amount of NSO5-planes, such that
ANSO5 > ANS5 could allow for vanishin mass parameter F0.
This is interesting because theories without mass parameter can in
principle be lifted to M-theory.
Unfortunately a similar analysis to above shows that this would require
that the curvature becomes small in the scaling limit, but R6 is fixed for
a given compactification. Thus a small number of NSO5-planes does
not help our cause.
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