Supersymmetry Breaking Warped Throats and the Weak Gravity Conjecture

Ginevra Buratti

GB, E. García-Valdecasas, A. Uranga [arXiv:1810.07673]

cf. talk by Eduardo

String Phenomenology, Geneva, 27th June 2019

Ginevra Buratti

The local AdS-WGC

27th June, 2019 1 / 15

[Arkani-Hamed Motl Nicolis Vafa 2007]

WGC: given an abelian gauge field, there exists a charged particle with mass

$$M \leq Q \qquad (\text{in units where } M_{Pl} = 1)$$

Motivated by the need for extremal black holes to decay
$$M = Q$$

$$M = Q$$

$$M = Q$$

$$M = Q$$

Also, given a (p+1)-form gauge potential, there exists a p-brane with tension

 $T \leq Q$

	۲ 🗆	▶ ★ 토 ▶ ★ 토 ▶ _ 토	500
Ginevra Buratti	The local AdS-WGC	27th June, 2019	2/15

Non susy AdS and the swampland

refined WGC: $T = Q \Leftrightarrow$ BPS states in a susy theory

[Ooguri Vafa 2017]

• A possible decay channel for non susy AdS supported by flux is through brane nucleation

T < Q AdS-WGC: all non susy AdS vacua must be*unstable*<math display="block">AdS-WGC: all non susy AdS vacua must be*unstable* $<math display="block">AdS \rightarrow C$ $AdS \rightarrow C$ Ad

Still true for "locally" AdS backgrounds?

Warped throats

• N regular + M fractional D3's probing a CY singularity

$$ds_{\mathbf{Y}_6}^2 = dr^2 + r^2 ds_{\mathbf{X}_5}^2$$

- For M = 0, the gauge theory is *conformal*. $AdS_5 \times \mathbf{X}_5$ gravity dual with constant RR 5-form flux N over X_5 \Rightarrow usual AdS-WGC
- For $M \neq 0$, the gauge theory is no more conformal and undergoes a non trivial RG flow.

The gravity dual is a *local* AdS solution

Ginevra Buratt

Warped throats

• RR 3-form flux $\int_{\Sigma_3} F_3 = M$ constant • NSNS 3-form flux $\int_{\Sigma_2} B_2 \sim g_s M \ln r$ $H_3 = dB_2$ • RR 5-form flux $\int_{\mathbf{X}_5} F_5 = N(r) \sim g_s M^2 \ln r$

$$ds^2 = Z(r)^{-1/2} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + Z(r)^{1/2} \left[dr^2 + r^2 ds_{\mathbf{X}_5}^2 \right]$$

with
$$Z(r) = \frac{L^4}{r^4} \ln\left(\frac{r}{r_s}\right) \qquad L^2 \sim g_s M \qquad r_s \text{ naked singularity}$$

(日) (四) (日) (日) (日)

In a consistent theory of quantum gravity, there are no stable non-supersymmetric solutions with asymptotics given by local AdS backgrounds

We do **not** rule out:

• metastable throats (no infinite volume factor multiplying the decay probability, in contrast with the usual AdS-WGC)

 \Rightarrow no direct contradiction with dS uplift

• warped throats with asymptotics modified by ingredients in the bulk

4 E N 4 E N

Evidence from deformation branes

Different classes of fractional branes, in particular:

• deformation branes, associated to complex deformations of the singular manifold

The naked singularity can be smoothed out by giving Σ_3 a finite size, while preserving supersymmetry

 \Rightarrow The local AdS-WGC is satisfied

Evidence from DSB branes

• DSB branes, not associated to complex deformations

 Σ_3 cannot be given a finite size, while preserving supersymmetry

If one could smooth out the IR region to an alternative susy breaking *stable* configuration, this would contradict the local AdS-WGC...

But we argue that this is not possible

cf. Eduardo's talk

The dP_1 runaway

simplest example of a duality cascade triggered by DSB branes

[Berenstein Herzog Ouyang Pinansky 2005] [Bertolini Bigazzi Crotone 2005] [Franco Hanany Saad Uranga 2005]

no susy minimum

runaway behaviour

The gravity dual is not known, but the field theory analysis suggests that smoothing of the singularity would break susy and involve some instability

	< □		◆ 置 ▶	Ξ.	୬୯୯
Ginevra Buratti	The local AdS-WGC	27th	June, 2019	9	10 / 15

- Large number N of regular D3's, possibly with extra M deformation branes, on top of an anti-O3 plane
- The corresponding AdS or local AdS backgrounds feel the absence of susy at 1-loop
- If *fully* stable, they would contradict both the AdS-WGC and the local AdS-WGC

[Witten 1998] [Uranga 2000]

Four possible kinds of anti-O3 planes:

D-brane description	$(heta_{NS}, heta_{RR})$	Tension	RR charge
anti-(03 ⁻)	(0, 0)	-1/2	+1/2
anti-(03 $^-$) + 1 $\overline{\mathrm{D3}}$	(0, 1/2)	+1/2	-1/2
anti- O3 ⁺	(1/2, 0)	+1/2	-1/2
anti- $\widetilde{\mathrm{O3}}^+$	(1/2, 1/2)	+1/2	-1/2

in D3 units

Under type IIB $SL(2, \mathbb{Z})$, the anti-(O3⁻) is a singlet and the other three transform into each other

Now introduce $N\ {\rm D3's}$

D-brane description	$(heta_{NS}, heta_{RR})$	Tension	RR charge
anti-(03 ⁻)	(0, 0)	-1/2	+1/2

• The gravitational and gauge interactions are both repulsive and the D3's are repelled

D-brane description	$(\theta_{NS}, \theta_{RR})$	Tension	RR charge
anti-(O3 $^-$) + 1 $\overline{\mathrm{D3}}$	(0, 1/2)	+1/2	-1/2

The D3's are attracted, but when reaching stringy distances a single D3 can annihilate with the stuck D3, which is replaced by another D3. In the final configuration, the gauge repulsion overcomes the gravitational attraction and the D3's are repelled

٠++	27		r 7		20	 (_ I
ιιι	ı a			v		
		-				9

D-brane description	$(\theta_{NS}, \theta_{RR})$	Tension	RR charge
anti- O3 ⁺	(1/2,0)	+1/2	-1/2

• The gravitational and gauge interactions are both attractive, so there is no obvious instability at weak coupling. However, strong-weak type IIB duality relates the anti- $(O3^+)$ at strong coupling to the anti- $(O3^-) + 1 \overline{D3}$ at weak coupling, thus impling that the system is unstable at strong coupling

D-brane description	$(heta_{NS}, heta_{RR})$	Tension	RR charge
anti- $\widetilde{\mathrm{O3}}^+$	(1/2, 1/2)	+1/2	-1/2

• As in the previous case, an instability is expected because the system is related to the anti- $(O3^-) + 1 \overline{D3}$ via an $SL(2, \mathbb{Z})$ transformation

Conclusions

- We propose a new swampland conjecture generalizing the AdS-WGC to locally AdS backgrounds and forbidding stable non susy warped throats with local AdS asymptotics
- Its application allows to reinterpret known results about warped throats from fractional branes
- We also derived new results on the (in)stability properties of large classes of non susy warped throats, providing further evidence for both the AdS-WGC and the local AdS-WGC

Thank you!