Infinite Distances and the Axion Weak Gravity Conjecture

Damian van de Heisteeg

String Pheno 2019, June 27

based on: 1905.00901 with Thomas Grimm

Motivation

$$\mathcal{L} = -f^2 (\partial_\mu a)^2 + \Lambda^4 \sum_n e^{-nS} (1 - \cos na) \qquad (a \sim a + 2\pi)$$

Transplanckian field ranges? \implies need **large** axion decay constant $f \gg M_p$

Weak Gravity Conjecture for axions [Arkani-Hamed et al. '06] $\label{eq:gamma} fS \leq q M_p$

large $f \implies$ small $S \implies$ many instanton corrections become relevant

Motivation

$$\mathcal{L} = -f^2 (\partial_\mu a)^2 + \Lambda^4 \sum_n e^{-nS} (1 - \cos na) \qquad (a \sim a + 2\pi)$$

Transplanckian field ranges? \implies need **large** axion decay constant $f \gg M_p$

Weak Gravity Conjecture for axions [Arkani-Hamed et al. '06]

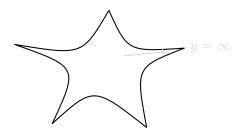
$$fS \le qM_p$$

 $\begin{array}{rcl} \mathsf{large}\ f \implies \mathsf{small}\ S \\ \implies & \mathsf{many}\ \mathsf{instanton}\ \mathsf{corrections}\ \mathsf{become}\ \mathsf{relevant} \end{array}$

Realization in string compactifications

This talk: Type IIA compactified on Y_3 (axions: $C_3 = \xi^{\mathcal{I}} \gamma_{\mathcal{I}}$)

 \implies f and S vary **non-trivially** over moduli space of Y_3



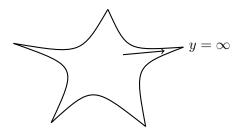
In limits: **power-law behavior** of f and S in y("grow/decrease parametrically")

Focus: infinite distance limits in $\mathcal{M}^{cs}(Y_3)$

Realization in string compactifications

This talk: Type IIA compactified on Y_3 (axions: $C_3 = \xi^{\mathcal{I}} \gamma_{\mathcal{I}}$)

 $\implies f$ and S vary **non-trivially** over moduli space of Y_3



In limits: **power-law behavior** of f and S in y("grow/decrease parametrically")

Focus: infinite distance limits in $\mathcal{M}^{cs}(Y_3)$

Main points:

• **splitting** of three-form cohomology:

$$H^3(Y_3) = \oplus V_\ell \qquad (\ell = 0, \dots, 6)$$

• asymptotic behavior of metric $\Big| \langle v, *w \rangle = \int_{V_2} v \wedge *w$

$$\begin{array}{ll} - \mbox{ growth } & \|v_{\ell}\|^2 \sim y^{\ell-3} \\ - \mbox{ orthogonality } & \langle v_{\ell}, *_{\infty} v_{\ell'} \rangle = 0 \mbox{ if } \ell \neq \ell' \end{array}$$

• symplectic property: $\langle v_\ell, v_{\ell'} \rangle = 0$ unless $\ell + \ell' = 6$

$$\implies \text{ split into } H^3(Y_3) = V_{\text{heavy}} \oplus V_{\text{light}} \oplus V_{\text{rest}}$$

axions $\checkmark \qquad \frown \text{ instantons}$

Main points:

• **splitting** of three-form cohomology:

$$H^3(Y_3) = \oplus V_\ell \qquad (\ell = 0, \dots, 6)$$

• asymptotic behavior of metric $\langle v, *w \rangle = \int_{Y_2} v \wedge *w$

$$\begin{array}{ll} - \mbox{ growth } & \|v_\ell\|^2 \sim y^{\ell-3} \\ - \mbox{ orthogonality } & \langle v_\ell, \ast_\infty v_{\ell'} \rangle = 0 \mbox{ if } \ell \neq \ell' \end{array}$$

• symplectic property: $\langle v_\ell, v_{\ell'} \rangle = 0$ unless $\ell + \ell' = 6$

 $\implies \text{ split into } H^3(Y_3) = V_{\text{heavy}} \oplus V_{\text{light}} \oplus V_{\text{rest}}$ axions $\checkmark \qquad \frown \text{ instantons}$

Main points:

• **splitting** of three-form cohomology:

$$H^3(Y_3) = \oplus V_\ell \qquad (\ell = 0, \dots, 6)$$

• asymptotic behavior of metric $\langle v, *w \rangle = \int_{Y_2} v \wedge *w$

$$\begin{array}{ll} - \mbox{ growth } & \|v_\ell\|^2 \sim y^{\ell-3} \\ - \mbox{ orthogonality } & \langle v_\ell, \ast_\infty v_{\ell'} \rangle = 0 \mbox{ if } \ell \neq \ell' \end{array}$$

• symplectic property: $\langle v_\ell, v_{\ell'} \rangle = 0$ unless $\ell + \ell' = 6$

Main points:

• **splitting** of three-form cohomology:

$$H^3(Y_3) = \oplus V_{\ell} \qquad (\ell_i = 0, \dots, 6)$$

• asymptotic behavior of metric $\Big|\langle v, \ast w \rangle = \int_{Y_3} v \wedge \ast w$

- growth
$$\|v_{\ell}\|^2 \sim (\frac{y^1}{y^2})^{\ell_1 - 3} \cdots (\frac{y^{n-1}}{y^n})^{\ell_{n-1} - 3} (y^n)^{\ell_n - 3}$$

- orthogonality $\langle v_{\ell}, *_{\infty} v_{\ell'} \rangle = 0$ if $\ell \neq \ell'$

• symplectic property: $\langle v_{\boldsymbol{\ell}}, v_{\boldsymbol{\ell}'} \rangle = 0$ unless $\boldsymbol{\ell} + \boldsymbol{\ell}' = \mathbf{6}$

Axion decay constants

Type IIA on Y_3 : R-R axions $C_3 = \xi^{\mathcal{I}} \gamma_{\mathcal{I}} \qquad (f^T \cdot f)_{\mathcal{I}\mathcal{J}}$

$$\mathcal{L}_{\rm kin} = G_{\mathcal{I}\mathcal{J}} \,\partial_{\mu} \xi^{\mathcal{I}} \,\partial^{\mu} \xi^{\mathcal{J}} \,, \qquad \mathcal{G}_{\mathcal{I}\mathcal{J}} = \frac{1}{2} e^{2D} \int_{Y_3} \gamma_{\mathcal{I}} \wedge * \gamma_{\mathcal{J}}$$

LMHS: special choice of three-form basis $\gamma_{\mathcal{I}} \in V_{\ell}$

 \implies kinetic terms **decouple** asymptotically into blocks

$$\implies f_{\ell\ell'} \sim \begin{cases} 0 & \text{if } \ell \neq \ell' \\ e^D y^{(\ell-3)/2} & \text{if } \ell = \ell' \end{cases}$$

Axion decay constants

Type IIA on
$$Y_3$$
: R-R axions $C_3 = \xi^{\mathcal{I}} \gamma_{\mathcal{I}} \qquad (f^T \cdot f)_{\mathcal{I}\mathcal{J}}$
$$\mathcal{L}_{kin} = G_{\mathcal{I}\mathcal{J}} \partial_{\mu} \xi^{\mathcal{I}} \partial^{\mu} \xi^{\mathcal{J}}, \qquad \mathcal{G}_{\mathcal{I}\mathcal{J}} = \frac{1}{2} e^{2D} \int_{Y_3} \gamma_{\mathcal{I}} \wedge * \gamma_{\mathcal{J}}$$

LMHS: special choice of three-form basis $\gamma_{\mathcal{I}} \in V_{\ell}$

 \implies kinetic terms **decouple** asymptotically into blocks

$$\implies f_{\ell\ell'} \sim \begin{cases} 0 & \text{if } \ell \neq \ell' \\ e^D y^{(\ell-3)/2} & \text{if } \ell = \ell' \end{cases}$$

Axion decay constants

Type IIA on
$$Y_3$$
: R-R axions $C_3 = \xi^{\mathcal{I}} \gamma_{\mathcal{I}} \qquad (f^T \cdot f)_{\mathcal{I}\mathcal{J}}$
$$\mathcal{L}_{kin} = G_{\mathcal{I}\mathcal{J}} \partial_{\mu} \xi^{\mathcal{I}} \partial^{\mu} \xi^{\mathcal{J}}, \qquad \mathcal{G}_{\mathcal{I}\mathcal{J}} = \frac{1}{2} e^{2D} \int_{Y_3} \gamma_{\mathcal{I}} \wedge * \gamma_{\mathcal{J}}$$

LMHS: special choice of three-form basis $\gamma_{\mathcal{I}} \in V_{\boldsymbol{\ell}}$

 \implies kinetic terms **decouple** asymptotically into blocks

$$\implies f_{\ell\ell'} \sim \begin{cases} 0 & \text{if } \ell \neq \ell' \\ e^{D}(\frac{y^1}{y^2})^{\frac{\ell_1 - 3}{2}} \cdots (\frac{y^{n-1}}{y^n})^{\frac{\ell_{n-1} - 3}{2}} (y^n)^{\frac{\ell_n - 3}{2}} & \text{if } \ell = \ell' \end{cases}$$

Infinite distances in $\mathcal{M}^{cs}(Y_3)$

Swampland Distance Conjecture [Ooguri, Vafa '06]

Infinite distance in field space \implies infinite tower of massless states

• Type IIB: Tower of D3-branes wrapping **3-cycles** \implies Particles with masses $M(Q) \rightarrow 0$

[Grimm, Palti, Valenzuela '18] [Grimm, Li, Palti '18]

• Type IIA: Euclidean D2-branes wrapping **3-cycles** \implies Instantons with actions $S(Q) \rightarrow 0$

[Grimm, DH '19], see also [Marchesano, Wiesner '19]

 $S(Q), M(Q) \le \|Q\| \to 0 \qquad (\text{via } S, M = e^{K/2} | \int_{Y_3} \Omega \wedge *Q |)$

Crucial feature: growth of number of (stable) states $m_{\rm crit} \sim y$ [Grimm, Palti, Valenzuela '18], multi-parameter version in [Grimm, DH '19]

Weak Gravity Conjecture and R-R axions

So far:

- Axions $\xi^\ell \in V_{\rm heavy}$ with increasing $f \sim y^{(\ell-3)/2}$
- D2-brane instantons $Q \in V_{\mathrm{light}}$ with decreasing $S(Q) \to 0$

Quick look at one-parameter results:

Singularity Type	S(Q)	$\max(\ell)$	fS bounded
		4	\checkmark
111		5	\checkmark
IV		6	?

Recall $fS \leq qM_p$

 \implies Increase in charge plays crucial role $(m_{
m crit} \sim y)$

Underlying reason: $Q(m) = q_0 + mNq_0$

 \implies this axion couples to charge Nq_0 that generates tower

Weak Gravity Conjecture and R-R axions

So far:

- Axions $\xi^\ell \in V_{\rm heavy}$ with increasing $f \sim y^{(\ell-3)/2}$
- D2-brane instantons $Q \in V_{\mathrm{light}}$ with decreasing $S(Q) \to 0$

Quick look at one-parameter results:

Singularity Type	S(Q)	$\max(\ell)$	fS bounded
II	$y^{-1/2}$	4	\checkmark
	y^{-1}	5	\checkmark
IV	$y^{-1/2}$	6	?

Recall $fS \leq qM_p$

 \implies Increase in charge plays crucial role $(m_{
m crit} \sim y)$

Underlying reason: $Q(m) = q_0 + mNq_0$

 \implies this axion couples to charge Nq_0 that generates tower

Weak Gravity Conjecture and R-R axions

So far:

- Axions $\xi^\ell \in V_{\rm heavy}$ with increasing $f \sim y^{(\ell-3)/2}$
- D2-brane instantons $Q \in V_{\mathrm{light}}$ with decreasing $S(Q) \to 0$

Quick look at one-parameter results:

Singularity Type	S(Q)	$\max(\ell)$	fS bounded
II	$y^{-1/2}$	4	\checkmark
	y^{-1}	5	\checkmark
IV IV	$y^{-1/2}$	6	?

Recall $fS \leq \mathbf{q}M_p$

 \implies Increase in charge plays crucial role ($m_{\rm crit} \sim y$)

Underlying reason: $Q(m) = q_0 + mNq_0$

 \implies this axion couples to charge Nq_0 that generates tower

What about multi-parameter limits?

space	decomposition	dimensions
Vlight	$V_{21} \oplus V_{22} \oplus V_{32}$	2 + (b - 2) + r
Vheavy	$V_{45}\oplus V_{44}\oplus V_{34}$	2 + (b - 2) + r
V_{rest}	$V_{43} \oplus V_{33} \oplus V_{23}$	$2 + 2(h^{2,1} - b - r - 1) + 2$

Some two-parameter cases:

space	decomposition	dimensions
Vlight	$V_{10} \oplus V_{12} \oplus V_{22} \oplus V_{32}$	1 + 1 + c + (r + 1)
V_{heavy}	$V_{56} \oplus V_{54} \oplus V_{44} \oplus V_{34}$	1 + 1 + c + (r + 1)
$V_{\rm rest}$	V_{33}	$2(h^{2,1} - c - r - 2)$

space	decomposition	dimensions
Vlight	$V_{30} \oplus V_{22} \oplus V_{32}$	1 + a + r
Vheavy	$V_{36}\oplus V_{44}\oplus V_{34}$	1 + a + r
V _{rest}	V_{33}	$2(h^{2,1} - a - r)$

space	decomposition	dimensions
Vlight	$V_{20} \oplus V_{22} \oplus V_{32}$	1 + b + r
V _{heavy}	$V_{46}\oplus V_{44}\oplus V_{34}$	1 + b + r
$V_{\rm rest}$	$V_{42} \oplus V_{33} \oplus V_{24}$	$1 + 2(h^{2,1} - b - r - 1) + 1$

 \implies similar arguments work \checkmark

More than two parameters?

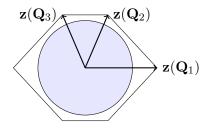
Short answer: yes \checkmark

Weak Gravity Conjecture for multiple axions [Cheung, Remmen '14]

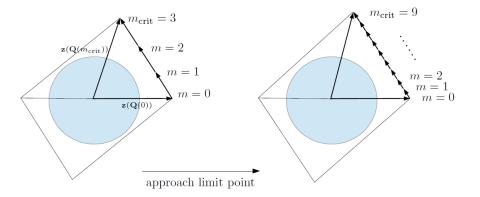
$$fS \le qM_p \qquad \Longrightarrow \qquad \mathbf{z}^{\mathcal{I}}(\mathbf{Q}_a) = \frac{f^{\mathcal{I}\mathcal{J}}\mathbf{Q}_{a\mathcal{J}}}{S(\mathbf{Q}_a)}$$

Convex Hull Condition

There exist instantons \mathbf{Q}_a such that the vectors $\pm \mathbf{z}(\mathbf{Q}_a)$ span a convex hull that contains the unit ball. (here: ball of finite size)



R-R axions and the Convex Hull Condition



Conclusions

Summary:

- Studied infinite distances in $\mathcal{M}^{cs}(Y_3)$ for Type IIA on Y_3

 \implies infinite towers of D2-brane instantons

• Studied parametrically growing axion decay constants for the axion Weak Gravity Conjecture

 \implies (growth of) same tower of instantons plays a crucial role

Note: no control over precise coefficients in the WGC (i.e. radius of the ball)

Thanks for your attention!

Conclusions

Summary:

- Studied infinite distances in $\mathcal{M}^{cs}(Y_3)$ for Type IIA on Y_3

 \implies infinite towers of D2-brane instantons

• Studied parametrically growing axion decay constants for the axion Weak Gravity Conjecture

 \implies (growth of) same tower of instantons plays a crucial role

Note: no control over precise coefficients in the WGC (i.e. radius of the ball)

Thanks for your attention!