Index Formulae for Line Bundle Cohomology on Complex Surfaces

Callum Brodie University of Oxford

Based on 1906.08363, 1906.08730, and 1906.08769 with Andrei Constantin, Rehan Deen, and Andre Lukas

27th of June 2019

Where will we end up?

Understand how for many surfaces, e.g. all compact toric,

$$h^0(S, \mathcal{L}) = \chi(\underline{\tilde{\mathcal{L}}}) \ \forall \mathcal{L}$$

Where will we end up?

Understand how for many surfaces, e.g. all compact toric,

$$\boxed{h^0(S, \mathcal{L}) = \chi(\underline{\tilde{\mathcal{L}}}) \ \forall \mathcal{L}}$$

And on dP_n and \mathbb{F}_n go further: closed-form expression for h^0 .

Where will we end up?

Understand how for many surfaces, e.g. all compact toric,

$$h^0(S, \mathcal{L}) = \chi(\underline{\tilde{\mathcal{L}}}) \ \forall \mathcal{L}$$

And on dP_n and \mathbb{F}_n go further: closed-form expression for h^0 .

Understand cohomology structure illustrated in these pictures:

Motivation

Andrei's preceding talk motivated understanding formulae for line bundle cohomology, but ...

Why (complex) surfaces?

Motivation

Andrei's preceding talk motivated understanding formulae for line bundle cohomology, but . . .

Why (complex) surfaces?

- Surfaces are building blocks for CYs (toric, del Pezzos, Hirzebruchs...)
 - ⇒ cohomology directly useful for e.g. model-building

Motivation

Andrei's preceding talk motivated understanding formulae for line bundle cohomology, but . . .

Why (complex) surfaces?

- Surfaces are building blocks for CYs (toric, del Pezzos, Hirzebruchs...)
 - ⇒ cohomology directly useful for e.g. model-building
- Simpler arena to understand cohomology
 - ⇒ learn about CY₃ cohomology structure too?

Line bundles in one-to-one correspondence with divisors,

$$\mathcal{L} \equiv \mathcal{O}(D)$$
,

up to linear equivalence.

Line bundles in one-to-one correspondence with divisors,

$$\mathcal{L} \equiv \mathcal{O}(D)$$

up to linear equivalence.

Particularly simple connection for zeroth cohomology,

$$h^0(\mathcal{L}) = \dim(|D|_{\mathrm{def}}) + 1.$$

where $|D|_{\rm def}$ is the space of deformations of D, or more correctly the complete linear system.

Line bundles in one-to-one correspondence with divisors,

$$\mathcal{L} \equiv \mathcal{O}(D)$$

up to linear equivalence.

Particularly simple connection for zeroth cohomology,

$$h^0(\mathcal{L}) = \dim(|D|_{\mathrm{def}}) + 1.$$

where $|D|_{\text{def}}$ is the space of deformations of D, or more correctly the complete linear system.

Key idea for us: some divisor parts can be rigid - always in complete linear system, don't contribute to deformations.

Dropping rigid pieces doesn't affect deformations, so zeroth cohomology of associated bundle is unaffected,

$$h^0(S, \mathcal{O}_S(D)) = h^0(S, \mathcal{O}_S(D - D_{\text{rigid}})),$$

when D_{rigid} is a fixed piece in deformations $|D|_{\text{def}}$.

Dropping rigid pieces doesn't affect deformations, so zeroth cohomology of associated bundle is unaffected,

$$h^0(S, \mathcal{O}_S(D)) = h^0(S, \mathcal{O}_S(D - D_{\text{rigid}})),$$

when D_{rigid} is a fixed piece in deformations $|D|_{\text{def}}$.

Why is this useful? If we throw away enough rigid pieces, often resulting bundle has simpler cohomology, specifically

$$h^0(S, \mathcal{O}_S(D - D_{\text{rigid}})) \stackrel{\text{often}}{=} \chi(S, \mathcal{O}_S(D - D_{\text{rigid}})).$$

Dropping rigid pieces doesn't affect deformations, so zeroth cohomology of associated bundle is unaffected,

$$h^0(S, \mathcal{O}_S(D)) = h^0(S, \mathcal{O}_S(D - D_{\text{rigid}})),$$

when D_{rigid} is a fixed piece in deformations $|D|_{\text{def}}$.

Why is this useful? If we throw away enough rigid pieces, often resulting bundle has simpler cohomology, specifically

$$h^0(S, \mathcal{O}_S(D - D_{\text{rigid}})) \stackrel{\text{often}}{=} \chi(S, \mathcal{O}_S(D - D_{\text{rigid}})).$$

But this is only useful in practice if we can detect rigid pieces. Happily, rigid pieces can be detected by intersections,

$$D \cdot D_{\text{rigid}} < 0 \quad \Rightarrow \quad D_{\text{rigid}} \subset |D|_{\text{def}}.$$

Intersection theory has negative self-intersections, $(D^-)^2=0$. For example exceptional blow-up divisors.

Intersection theory has negative self-intersections, $(D^-)^2 = 0$. For example exceptional blow-up divisors.

If a divisor D contains D^- as a part, then there are negative contributions to intersection $(D^-) \cdot D$.

Intersection theory has negative self-intersections, $(D^-)^2 = 0$. For example exceptional blow-up divisors.

If a divisor D contains D^- as a part, then there are negative contributions to intersection $(D^-) \cdot D$.

But intersection theory is defined up to equivalence: so doesn't care about individual deformations.

Intersection theory has negative self-intersections, $(D^-)^2 = 0$. For example exceptional blow-up divisors.

If a divisor D contains D^- as a part, then there are negative contributions to intersection $(D^-) \cdot D$.

But intersection theory is defined up to equivalence: so doesn't care about individual deformations.

So negative intersection $(D^-)\cdot D<0$ means every deformation contains the piece $D^-.$

General theorems

Question:

How many rigid pieces can be detected with intersections?

General theorems

Theorem

Let D be an effective divisor on a smooth compact complex projective surface S, with associated line bundle $\mathcal{O}_S(D)$. Let \mathcal{I} be the set of irreducible negative self-intersection divisors. Then the following map,

$$D \to \tilde{D} = D - \sum_{C \in \mathcal{I}} \theta(-D \cdot C) \operatorname{ceil}\left(\frac{D \cdot C}{C^2}\right) C$$

where θ is the step function, preserves the zeroth cohomology,

$$h^0(S, \mathcal{O}_S(\tilde{D})) = h^0(S, \mathcal{O}_S(D)).$$

General theorems

Theorem

Let D be an effective divisor on a smooth compact complex projective surface S, with associated line bundle $\mathcal{O}_S(D)$. Let \mathcal{I} be the set of irreducible negative self-intersection divisors. Then the following map,

$$D \to \tilde{D} = D - \sum_{C \in \mathcal{I}} \theta(-D \cdot C) \operatorname{ceil}\left(\frac{D \cdot C}{C^2}\right) C$$

where θ is the step function, preserves the zeroth cohomology,

$$h^0(S, \mathcal{O}_S(\tilde{D})) = h^0(S, \mathcal{O}_S(D)).$$

Corollary

Write $\underline{\tilde{D}}$ for the divisor that is the result of iterating the map $D \to \tilde{D}$, until stabilisation after a finite number of steps. Then $\underline{\tilde{D}}$ is a nef divisor such that $h^0(S, \mathcal{O}(D)) = h^0(S, \mathcal{O}(\underline{\tilde{D}}))$.

Divisor D mapped to new divisor $\underline{\tilde{D}}$: $D \to \tilde{D} \to \ldots \to \underline{\tilde{D}}$.

Divisor D mapped to new divisor $\underline{\tilde{D}}$: $D \to \tilde{D} \to \ldots \to \underline{\tilde{D}}$.

If higher cohomologies vanish for $\underline{\tilde{D}}$, then h^0 reduces to index computation (simpler, topological),

if
$$h^1(S, \mathcal{O}_S(\underline{\tilde{D}})) = h^2(S, \mathcal{O}_S(\underline{\tilde{D}})) = 0$$
,
then $h^0(S, \mathcal{O}_S(D)) = h^0(S, \mathcal{O}_S(\underline{\tilde{D}})) = \chi(S, \mathcal{O}_S(\underline{\tilde{D}}))$.

Divisor D mapped to new divisor $\underline{\tilde{D}}$: $D \to \tilde{D} \to \ldots \to \underline{\tilde{D}}$.

If higher cohomologies vanish for $\underline{\tilde{D}}$, then h^0 reduces to index computation (simpler, topological),

if
$$h^1(S, \mathcal{O}_S(\underline{\tilde{D}})) = h^2(S, \mathcal{O}_S(\underline{\tilde{D}})) = 0$$
,
then $h^0(S, \mathcal{O}_S(D)) = h^0(S, \mathcal{O}_S(\underline{\tilde{D}})) = \chi(S, \mathcal{O}_S(\underline{\tilde{D}}))$.

Can we make general statements on vanishing for $\underline{\tilde{D}}$? Yes when there are vanishing theorems.

Corollary

If a vanishing theorem ensures that $h^q(S,\mathcal{L})=0$ for q>0 for all nef bundles \mathcal{L} , then all zeroth cohomology is given by an index,

$$h^0(S, \mathcal{O}_S(D)) = \chi(S, \mathcal{O}_S(\underline{\tilde{D}}))$$

Example: Compact toric surfaces

Example: Compact toric surfaces

For the important class of compact toric surfaces there is a powerful vanishing theorem (Demazure) for nef bundles.

Corollary

Let S be a compact toric surface, and D an effective divisor. Then

$$h^0(S, \mathcal{O}(D)) = \chi(\underline{\tilde{D}}),$$

where the divisor $\underline{\tilde{D}}$ is obtained from D by iterating the shifts $D \to \tilde{D}$.

Single-shift cases

Single-shift cases

If there is a vanishing theorem for the nef cone, and $D \to \tilde{D} \to \ldots \to \underline{\tilde{D}}$ stabilises after one step, then we have an immediate closed-form expression for h^0 .

Single-shift cases

If there is a vanishing theorem for the nef cone, and $D \to \tilde{D} \to \ldots \to \underline{\tilde{D}}$ stabilises after one step, then we have an immediate closed-form expression for h^0 .

Corollary

If \tilde{D} is always nef and $h^q(S_S, \mathcal{O}_S(\underline{\tilde{D}})) = 0$ for q > 0 for all \tilde{D} , then for effective D we have the closed-form expression,

$$h^0(S, \mathcal{O}_S(D)) = \chi \left(D - \sum_{C \in \mathcal{I}} \theta(-D \cdot C) \operatorname{ceil} \left(\frac{D \cdot C}{C^2} \right) C \right).$$

Surprisingly, there are many interesting examples of such surfaces, including Hirzebruch and del Pezzo surfaces.

Example: Hirzebruch surfaces \mathbb{F}_n

Vanishing theorem for nef bundles \checkmark (Demazure) Shift $D \to \tilde{D}$ terminates in one step \checkmark

Example: Hirzebruch surfaces \mathbb{F}_n

Vanishing theorem for nef bundles \checkmark (Demazure) Shift $D \to \tilde{D}$ terminates in one step \checkmark

$$h^{0}\left(\mathbb{F}_{n}, \mathcal{O}_{\mathbb{F}_{n}}(D)\right) = \chi\left(D - \theta(-D \cdot C)\operatorname{ceil}\left(\frac{D \cdot C}{C^{2}}\right)C\right).$$

where ${\it C}$ is the unique negative self-intersection curve.

Example: Hirzebruch surfaces \mathbb{F}_n

Vanishing theorem for nef bundles \checkmark (Demazure) Shift $D \to \tilde{D}$ terminates in one step \checkmark

$$h^{0}\left(\mathbb{F}_{n}, \mathcal{O}_{\mathbb{F}_{n}}(D)\right) = \chi\left(D - \theta(-D \cdot C)\operatorname{ceil}\left(\frac{D \cdot C}{C^{2}}\right)C\right).$$

where C is the unique negative self-intersection curve.

Figure shows situation for \mathbb{F}_2 (2d Picard lattice)

Region 1 is the nef cone

Example: del Pezzo surfaces dP_n

Vanishing theorem for nef bundles \checkmark (Kawamata-Viehweg) Shift $D \to \tilde{D}$ terminates in one step \checkmark

Example: del Pezzo surfaces dP_n

Vanishing theorem for nef bundles \checkmark (Kawamata-Viehweg) Shift $D \to \tilde{D}$ terminates in one step \checkmark

$$h^{0}\left(\mathrm{dP}_{n},\mathcal{O}_{\mathrm{dP}_{n}}(D)\right) = \chi\left(D + \sum_{C_{i}} \theta(-D \cdot C_{i})\left(D \cdot C_{i}\right)C_{i}\right),$$

where C_i are the exceptional curves.

Example: del Pezzo surfaces dP_n

Vanishing theorem for nef bundles \checkmark (Kawamata-Viehweg) Shift $D \to \tilde{D}$ terminates in one step \checkmark

$$h^{0}\left(\mathrm{dP}_{n},\mathcal{O}_{\mathrm{dP}_{n}}(D)\right) = \chi\left(D + \sum_{C_{i}} \theta(-D \cdot C_{i})\left(D \cdot C_{i}\right)C_{i}\right),$$

where C_i are the exceptional curves.

Figure shows situation for dP_2 (3d Picard lattice)

Region 1 is the nef cone

Results

- Understanding of structure for h^0 for surfaces.
- For compact toric surfaces: algorithm to get h^0 as index.
- For dP_n and \mathbb{F}_n : closed-form index formulae for h^0 .

Results

- Understanding of structure for h^0 for surfaces.
- For compact toric surfaces: algorithm to get h^0 as index.
- For dP_n and \mathbb{F}_n : closed-form index formulae for h^0 .

Applications

- Use surfaces as building blocks for CY₃ and lift h⁰ to CY₃.
 ⇒ e.g. proof of formulae for all h⁰ for many elliptic CY₃.
- Can reverse-engineer rigid divisors from cohomology. (See Andre's plenary talk.)

Results

- Understanding of structure for h^0 for surfaces.
- For compact toric surfaces: algorithm to get h^0 as index.
- For dP_n and \mathbb{F}_n : closed-form index formulae for h^0 .

Applications

- Use surfaces as building blocks for CY₃ and lift h⁰ to CY₃.
 ⇒ e.g. proof of formulae for all h⁰ for many elliptic CY₃.
- Can reverse-engineer rigid divisors from cohomology. (See Andre's plenary talk.)

Extensions

- Extend to other surfaces? K3, general type, ...
- Extend proofs to higher dimensions? 3-folds, 4-folds, ...
- Extend results to higher cohomologies? h^1, h^2, \dots

Thank you for your attention