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Where will we end up?

Understand how for many surfaces, e.g. all compact toric,

h0(S,L) = χ(L̃) ∀L

And on dPn and Fn go further: closed-form expression for h0.

Understand cohomology structure illustrated in these pictures:



Where will we end up?

Understand how for many surfaces, e.g. all compact toric,

h0(S,L) = χ(L̃) ∀L

And on dPn and Fn go further: closed-form expression for h0.

Understand cohomology structure illustrated in these pictures:



Where will we end up?

Understand how for many surfaces, e.g. all compact toric,

h0(S,L) = χ(L̃) ∀L

And on dPn and Fn go further: closed-form expression for h0.

Understand cohomology structure illustrated in these pictures:



Where will we end up?

Understand how for many surfaces, e.g. all compact toric,

h0(S,L) = χ(L̃) ∀L

And on dPn and Fn go further: closed-form expression for h0.

Understand cohomology structure illustrated in these pictures:



Motivation

Andrei’s preceding talk motivated understanding
formulae for line bundle cohomology, but . . .

Why (complex) surfaces?

• Surfaces are building blocks for CYs
(toric, del Pezzos, Hirzebruchs . . . )

⇒ cohomology directly useful for e.g. model-building

• Simpler arena to understand cohomology

⇒ learn about CY3 cohomology structure too?
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Line bundles and divisors

Line bundles in one-to-one correspondence with divisors,

L ≡ O(D) ,

up to linear equivalence.

Particularly simple connection for zeroth cohomology,

h0(L) = dim (|D|def) + 1 .

where |D|def is the space of deformations of D, or more
correctly the complete linear system.

Key idea for us: some divisor parts can be rigid - always in
complete linear system, don’t contribute to deformations.
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Rough summary of idea

Dropping rigid pieces doesn’t affect deformations, so zeroth
cohomology of associated bundle is unaffected,

h0(S,OS(D)) = h0(S,OS(D −Drigid)) ,

when Drigid is a fixed piece in deformations |D|def .

Why is this useful? If we throw away enough rigid pieces,
often resulting bundle has simpler cohomology, specifically

h0(S,OS(D −Drigid))
often
= χ(S,OS(D −Drigid)) .

But this is only useful in practice if we can detect rigid pieces.
Happily, rigid pieces can be detected by intersections,

D ·Drigid < 0 ⇒ Drigid ⊂ |D|def .
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Divisor intersections

Intersection theory has negative self-intersections, (D−)2 = 0.
For example exceptional blow-up divisors.

If a divisor D contains D−as a part, then there are
negative contributions to intersection (D−) ·D.

But intersection theory is defined up to equivalence:
so doesn’t care about individual deformations.

So negative intersection (D−) ·D < 0 means
every deformation contains the piece D−.
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General theorems

Question:
How many rigid pieces can be
detected with intersections?



General theorems

Theorem
Let D be an effective divisor on a smooth compact complex projective
surface S, with associated line bundle OS(D). Let I be the set of
irreducible negative self-intersection divisors. Then the following map,

D → D̃ = D −
∑
C∈I

θ(−D · C) ceil

(
D · C
C2

)
C ,

where θ is the step function, preserves the zeroth cohomology,

h0
(
S,OS(D̃)

)
= h0

(
S,OS(D)

)
.

Corollary
Write D̃ for the divisor that is the result of iterating the map D → D̃,
until stabilisation after a finite number of steps. Then D̃ is a nef
divisor such that h0

(
S,O(D)

)
= h0

(
S,O(D̃)

)
.
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Combination with vanishing theorems

Divisor D mapped to new divisor D̃: D → D̃ → . . .→ D̃.

If higher cohomologies vanish for D̃, then h0 reduces to
index computation (simpler, topological),

if h1(S,OS(D̃)) = h2(S,OS(D̃)) = 0 ,

then h0(S,OS(D)) = h0(S,OS(D̃)) = χ(S,OS(D̃)) .

Can we make general statements on vanishing for D̃?
Yes when there are vanishing theorems.

Corollary
If a vanishing theorem ensures that hq(S,L) = 0 for q > 0 for all nef
bundles L, then all zeroth cohomology is given by an index,

h0(S,OS(D)) = χ(S,OS(D̃)) .
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Example: Compact toric surfaces

For the important class of compact toric surfaces there is a
powerful vanishing theorem (Demazure) for nef bundles.

Corollary
Let S be a compact toric surface, and D an effective divisor. Then

h0
(
S,O(D)

)
= χ(D̃) ,

where the divisor D̃ is obtained from D by iterating the shifts D → D̃.
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Single-shift cases

If there is a vanishing theorem for the nef cone,
and D → D̃ → . . .→ D̃ stabilises after one step,
then we have an immediate closed-form expression for h0.

Corollary
If D̃ is always nef and hq(SS ,OS(D̃)) = 0 for q > 0 for all D̃, then for
effective D we have the closed-form expression,

h0(S,OS(D)) = χ

(
D −

∑
C∈I

θ(−D · C) ceil

(
D · C
C2

)
C

)
.

Surprisingly, there are many interesting examples of such
surfaces, including Hirzebruch and del Pezzo surfaces.
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Example: Hirzebruch surfaces Fn

Vanishing theorem for nef bundles (Demazure)
Shift D → D̃ terminates in one step

h0 (Fn,OFn(D)) = χ

(
D − θ(−D · C) ceil

(
D · C
C2

)
C

)
.

where C is the unique negative self-intersection curve.

Figure shows
situation for F2

(2d Picard lattice)

Region 1 is the nef cone
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Example: del Pezzo surfaces dPn

Vanishing theorem for nef bundles (Kawamata-Viehweg)
Shift D → D̃ terminates in one step

h0 (dPn,OdPn(D)) = χ

(
D +

∑
Ci

θ(−D · Ci) (D · Ci)Ci

)
,

where Ci are the exceptional curves.

Figure shows
situation for dP2

(3d Picard lattice)

Region 1 is the nef cone
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Results
• Understanding of structure for h0 for surfaces.
• For compact toric surfaces: algorithm to get h0 as index.
• For dPn and Fn: closed-form index formulae for h0.

Applications
• Use surfaces as building blocks for CY3 and lift h0 to CY3.

⇒ e.g. proof of formulae for all h0 for many elliptic CY3.
• Can reverse-engineer rigid divisors from cohomology.

(See Andre’s plenary talk.)

Extensions
• Extend to other surfaces? K3, general type, . . .
• Extend proofs to higher dimensions? 3-folds, 4-folds, . . .
• Extend results to higher cohomologies? h1, h2, . . .
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Thank you for your attention


