The Calabi-Yau Hypersurface Landscape

Mehmet Demirtas Cornell University

String Pheno 2019

Based on works with (various subsets of): Cody Long, Liam McAllister, Mike Stillman, Andres Rios Tascon

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

We study large ensembles of Calabi-Yau hypersurfaces in toric varieties.

• Develop algorithms and computational tools.

[MD, Cody Long, Liam McAllister, Mike Stillman, work in progress] [MD, Liam McAllister, Andres Rios Tascon, 1908.XXXXX] [MD, Cody Long, Liam McAllister, Mike Stillman, 1808.01282]

We study large ensembles of Calabi-Yau hypersurfaces in toric varieties.

• Develop algorithms and computational tools.

[MD, Cody Long, Liam McAllister, Mike Stillman, work in progress] [MD, Liam McAllister, Andres Rios Tascon, 1908.XXXXX] [MD, Cody Long, Liam McAllister, Mike Stillman, 1808.01282]

Why?

• Explore Quantum Gravity via explicit compactifications of String Theory.

The Calabi Yau Hypersurface Landscape

We study large ensembles of Calabi-Yau hypersurfaces in toric varieties.

• Develop algorithms and computational tools.

[MD, Cody Long, Liam McAllister, Mike Stillman, work in progress] [MD, Liam McAllister, Andres Rios Tascon, 1908.XXXXX] [MD, Cody Long, Liam McAllister, Mike Stillman, 1808.01282]

Why?

- Explore Quantum Gravity via explicit compactifications of String Theory.
- Refute, refine or support conjectures. [MD, Cody Long, Liam McAllister, Mike Stillman, 1906.08262]

The Calabi Yau Hypersurface Landscape

We study large ensembles of Calabi-Yau hypersurfaces in toric varieties.

• Develop algorithms and computational tools.

[MD, Cody Long, Liam McAllister, Mike Stillman, work in progress] [MD, Liam McAllister, Andres Rios Tascon, 1908.XXXXX] [MD, Cody Long, Liam McAllister, Mike Stillman, 1808.01282]

Why?

- Explore Quantum Gravity via explicit compactifications of String Theory.
- Refute, refine or support conjectures. [MD, Cody Long, Liam McAllister, Mike Stillman, 1906.08262]
- Study landscape statistics.
 - Black hole superradiance: See Viraf Mehta's talk!

[MD, Cody Long, David J. E. Marsh, Liam McAllister, Viraf M. Mehta, Matthew J. Stott, work in progress]

• Large $h^{1,1}$ + α' under control = Ultralight axions

[MD, Cody Long, Liam McAllister, Mike Stillman, 1808.01282]

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Plan

Part 1 - Tools and Algorithms Part 2 - Machine Learning

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

A Quick Review

- A <u>fine</u>, <u>regular</u>, <u>star</u> triangulation (FRST) of a reflexive polytope Δ° defines a toric variety V that has a CY hypersurface X. [Batyrev, alg-geom/9310003]
 - Fine: Use all points of Δ° .
 - Regular: See next slide.
 - Star: All simplices include the origin.
- Number of points of $\Delta^{\circ}: h^{1,1} + 4$. (When Δ° is favorable)
- 473,800,776 reflexive polytopes in 4d. [Kreuzer, Skarke, hep-th/0002240] $\circ 1 \le h^{1,1} \le 491$
- Number of FRSTs increases *exponentially* with $h^{1,1}$.
 - Can compute upper bounds on the number of FRSTs. See Andres Rios Tascon's talk!

[MD, Liam McAllister, Andres Rios Tascon, 1908.XXXXX]

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Regular Triangulations

- 'Lift' each point: $\vec{p_i} = (x_i, y_i) \rightarrow \vec{p_i}' = (x_i, y_i, h_i)$
- Take the lower part of the convex hull.
- Explore the space of regular triangulations by changing \vec{h} !

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Goal: Study geometric invariants

- Compute intersection numbers κ^{ijk} of X
 - Needed to compute CY volume, divisor volumes, ...

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Goal: Study geometric invariants

- Compute intersection numbers κ^{ijk} of X
 - Needed to compute CY volume, divisor volumes, ...
- Compute cone of effective divisors ('Effective Cone') and effective curves ('Mori Cone') of V
 - Effective divisors/curves of X? [MD, Cody Long, Liam McAllister, Mike Stillman, work in progress]

The Calabi Yau Hypersurface Landscape

Goal: Study geometric invariants

- Compute intersection numbers κ^{ijk} of X
 - Needed to compute CY volume, divisor volumes, ...
- Compute cone of effective divisors ('Effective Cone') and effective curves ('Mori Cone') of V
 - Effective divisors/curves of X? [MD, Cody Long, Liam McAllister, Mike Stillman, work in progress]
- Find genus-one fibrations
 - Need Mori Cone of X to find *all* fibrations.

[Huang, Taylor, 1805.05907] [Huang, Taylor, 1809.05160] [Huang, Taylor, 1811.04947] [Anderson, Gao, Gray, Lee, 1708.07907] [Kollár, math.AG/1206.5721]

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

String Pheno 2019

Liam McAllister, Andres Rios Tascon, 1908.XXXXX]

- Many computations become difficult when *h*^{1,1} is large.
 - General purpose software, like SAGE, are insufficient.

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

- Many computations become difficult when *h*^{1,1} is large.
 - General purpose software, like SAGE, are insufficient.
- Solution: Develop and implement our own algorithms.

- Many computations become difficult when $h^{1,1}$ is large.
 - General purpose software, like SAGE, are insufficient.
- Solution: Develop and implement our own algorithms.

Obtain one FRST

Year	$h^{1,1}$	CPU time
2014	25	a few hours
2017	491	2s
2019	491	$20\mathrm{ms}$

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

- Many computations become difficult when $h^{1,1}$ is large.
 - General purpose software, like SAGE, are insufficient.
- Solution: Develop and implement our own algorithms.

Obtain one FRST

Compute	κ^{ijk}
---------	----------------

Year	$h^{1,1}$	CPU time
2014	25	a few hours
2017	491	2s
2019	491	20ms

Year	$h^{1,1}$	CPU time
2017	100	30 mins
2018	491	30s
2019	491	3s

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Can we use ML to study triangulations?

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Can we use ML to study triangulations?

- Main difficulty: How do you feed a triangulation to an ML algorithm?
 - Machine learning with structured data:

[Battaglia et al., cs.LG/1806.01261] [Xu et al., cs.LG/1810.00826] [Kipf et al., cs.LG/1609.02907] [Qi et al., cs.CV/1612.00593] [Scarselli et al., 2009] ... many more

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Can we use ML to study triangulations?

- Main difficulty: How do you feed a triangulation to an ML algorithm?
 - Machine learning with structured data:

[Battaglia et al., cs.LG/1806.01261] [Xu et al., cs.LG/1810.00826] [Kipf et al., cs.LG/1609.02907] [Qi et al., cs.CV/1612.00593] [Scarselli et al., 2009] ... many more

• Solution for regular triangulations: Use \vec{h} !

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

A demonstration at $h^{1,1} = 15$

- Single (randomly chosen) reflexive polytope.
- Training set: ~850,000 height vectors corresponding to ~ 255,000 FRSTs.
- Test set: ~150,000 height vectors corresponding to ~45,000 FRSTs.
- A simple neural network architecture:

<u>Q1</u>: What is $\kappa^{1,1,1}$?

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

<u>Q1</u>: What is $\kappa^{1,1,1}$?

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

<u>Q1</u>: What is $\kappa^{1,1,1}$?

Performance:		
Training Time	Accuracy	
5 minutes	92%	
1 hour	97.3%	

★ We can predict intersection numbers with ML!

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

How do we answer this question?

- 1. Pick a basis $\{\omega_1, \ldots, \omega_{15}\}$ for $H^2(X, \mathbb{Z})$.
- 2. Expand the Kähler form $J = t^i \omega_i$.
- 3. Compute Mori(V).

$$Vol(C_a) = \int_{C_a} J = C_{ai}t^i, \quad C_a \in Mori(V)$$

4. Compute κ^{ijk} .
$$Vol(X) = \frac{1}{6}\int_X J \wedge J \wedge J = \frac{1}{6}\kappa_{ijk}t^it^jt^k$$

5. Minimize: Vol(X)given: $Vol(C_a) \ge 1 \quad \forall C_a \in Mori(V)$

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

Performance: $\eta = \frac{\text{Vol}(X)_{\text{True}} - \text{Vol}(X)_{\text{Pred}}}{\text{Vol}(X)_{\text{True}}}$

- $\eta < 0.25$: 90% of the time
- $\eta < 0.5$: 99% of the time

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

How do we answer this question?

- 1. Pick a basis $\{\omega_1, \ldots, \omega_{15}\}$ for $H^2(X, \mathbb{Z})$.
- 2. Expand the Kähler form $J = t^i \omega_i$.
- 3. Compute Mori(V).

$$\operatorname{Vol}(C_a) = \int_{C_a} J = C_{ai} t^i, \quad C_a \in \operatorname{Mori}(V)$$
4 Compute κ^{ijk}

$$\operatorname{Vol}(X) = \frac{1}{6} \int_X J \wedge J \wedge J = \frac{1}{6} \kappa_{ijk} t^i t^j t^k$$

5. Minimize: Vol(X)given: $Vol(C_a) \ge 1 \quad \forall C_a \in Mori(V)$

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

How do we answer this question?

- 1. Pick a basis $\{\omega_1, \ldots, \omega_{15}\}$ for $H^2(X, \mathbb{Z})$.
- 2. Expand the Kähler form $J = t^i \omega_i$.
- 3. Compute Mori(V).

$$\operatorname{Vol}(C_a) = \int_{C_a} J = C_{ai} t^i, \quad C_a \in \operatorname{Mori}(V)$$
4. Compute κ^{ijk} .

$$\operatorname{Vol}(X) = \frac{1}{6} \int_X J \wedge J \wedge J = \frac{1}{6} \kappa_{ijk} t^i t^j t^k$$

5. Minimize: Vol(X)given: $Vol(C_a) \ge 1 \quad \forall C_a \in Mori(V)$

t ~ 1s Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

How do we answer this question?

- Pick a basis $\{\omega_1, \ldots, \omega_{15}\}$ for $H^2(X, \mathbb{Z})$. 1.
- Expand the Kähler form $J = t^i \omega_i$. 2.
- 3. Compute Mori(V).

$$\operatorname{Vol}(C_a) = \int_{C_a} J = C_{ai} t^i, \quad C_a \in \operatorname{Mori}(V)$$
4 Compute κ^{ijk}

$$\operatorname{Vol}(X) = \frac{1}{6} \int_X J \wedge J \wedge J = \frac{1}{6} \kappa_{ijk} t^i t^j t^k$$

5. Minimize: Vol(X)given: $\operatorname{Vol}(C_a) \geq 1 \quad \forall C_a \in \operatorname{Mori}(V)$

The Calabi Yau Hypersurface Landscape

t ~ 50µs

• We can study Calabi Yau hypersurfaces in toric varieties efficiently.

- We can study Calabi Yau hypersurfaces in toric varieties efficiently.
 - Random Calabi Yau hypersurfaces via random walks in \vec{h} space. [work in progress]

- We can study Calabi Yau hypersurfaces in toric varieties efficiently.
 - Random Calabi Yau hypersurfaces via random walks in \vec{h} space. [work in progress]
- Machine learning can be used to study triangulations.
 - \circ Predict intersection numbers. \checkmark
 - Predict volumes. \checkmark
 - Predict axion decay constants? Find fibration structures? Classify polytopes? [work in progress]
 - Can we build a Calabi Yau optimizer? [work in progress]

The Calabi Yau Hypersurface Landscape

- We can study Calabi Yau hypersurfaces in toric varieties efficiently.
 - Random Calabi Yau hypersurfaces via random walks in \vec{h} space. [work in progress]
- Machine learning can be used to study triangulations.
 - \circ Predict intersection numbers. \checkmark
 - Predict volumes. \checkmark
 - Predict axion decay constants? Find fibration structures? Classify polytopes? [work in progress]
 - Can we build a Calabi Yau optimizer? [work in progress]
- A Calabi Yau database:
 - Study *every polytope* in the Kreuzer-Skarke database!

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

THANK YOU!

A 2-d cross section of the secondary fan of the reflexive polytope with $h^{1,1} = 491$.

Each colored region represents the Kähler Cone of a toric variety.

The landscape is **beautiful!**

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

<u>**O:**</u> How many non-zero κ^{ijk} 's?

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape

<u>Q</u>: How many non-zero κ^{ijk} 's?

Performance:

Tolerance	Accuracy
Correct	91%
Within ± 1	94%
Within ± 3	98%

Mehmet Demirtas

The Calabi Yau Hypersurface Landscape