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Why, what and how?

Motivation: 4D physics from string compactifications

CY manifolds −→ large set of semi-realistic string vacua

Still lack fully realistic compactifications:
moduli, physical couplings, stability, cosmological constant,...

While CY geometry is useful it is not necessary.

This talk

SU(3) structure → 4D N = 1 SUSY

SUSY, BI, EOM constrain torsion

Can we get a large class of example manifolds?

Idea:

Construct explicit SU(3) structures on CY manifolds

Bonus: get explicit metric

How far can we get at satisfying all constraints?
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Motivation: 4D Heterotic N = 1 Minkowski solutions
Candelas–Horowitz–Strominger–Witten:85,Strominger:86, Hull:86

Geometry

SUSY equations, H = 0 ⇒ covariantly constant spinor η on X : ∇η = 0

⇐⇒ X is Calabi–Yau

SUSY equations, H 6= 0 ⇒ globally defined spinor η on X : ∇Tη = 0

⇐⇒ SU(3) structure on X with torsion T ∼ H

Gauge field & vector bundle

SUSY equations ⇒ holomorphic vector bundle V → X with HYM connection

Must also satisfy BI dH = α′

4 (tr(F ∧ F )− tr(R− ∧ R−))
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SU(3) structure

G structure: restrict transition functions patching local frames of cotangent bundle

2. FROM G-STRUCTURES TO CALABI-YAU GEOMETRY

Uα Uβ

ea e ′
a

O(d)

(a) Structure group O(d)

v
v v

Uα Uβ

ea
e ′
a

O(d − 1)

(b) A globally defined vector reduces the
structure to O(d − 1)

Figure 1: A set of non-degenerate tensors describes a G-structure. On the left: in the
special case of the figure we assume that the structure group is already reduced to O(d)
(see example 2.1). On the right: an everywhere non-vanishing vector field v is introduced.
Because of the existence of this vector field it is possible to construct a reduced frame
bundle, where on the overlap between the patches only the rotations that leave the vector
invariant are allowed as transition functions, i.e. (proper and improper) rotations in a
plane orthogonal to the v-axis, making up O(d − 1). The figure is inspired by a similar
one from a talk by Davide Cassani.

A convenient way to describe a G-structure, used a lot by physicists, is via one or
more G-invariant tensors — or spinors as we will see later — that are globally defined on
M and non-degenerate. Indeed, since these objects are globally defined it is possible to
choose frames ea in each patch so that they take exactly the same form in all patches. It
follows that only those transition functions that leave these objects invariant are allowed
and the structure group reduces to G or a subgroup thereof, see figure 1.

Note that, typically, such a set of G-invariant tensors is not unique, so that there
are several descriptions of the same G-structure. Furthermore, it is possible that these
tensors are actually invariant under a larger group G′, in which case one can add more
tensors to more accurately describe the G-structure. The G-invariant tensors can be
found in a systematic way using representation theory. Indeed, one should decompose the
different representations of GL(d,R), in which a tensor on M transforms, into irreducible
representations of G and scan for invariants. These invariants will then correspond to
non-degenerate G-invariant tensors.

If the G-structure is already reduced to SO(d) (see example 2.1) and the manifold is
spin, which means one can lift the SO(d) in the transition functions to its double cover
Spin(d) in a globally consistent way, we can also consider spinor bundles. We will especially
be interested in invariant spinors since they are needed to construct the generators of
unbroken supersymmetry.

10

picture from Koerber:10
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SU(3) structure

M6 orientable with metric: G = SO(6) ⊂ GL(6).

M6 spin: SO(6) lifts to Spin(6) ∼= SU(4).

Let η Weyl, positive chirality: η ∈ 4 of SU(4). Choose basis:

η =


0
0
0
η0

 invariant under

(
U 03×1

01×3 1

)
, U ∈ SU(3)

Globally defined η =⇒ G = SU(3).

All orientable, spin M6 admit a nowhere vanishing η; torsion undetermined.
cf. Bryant:05
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SU(3) structure

η ⇔ real two-form J and complex decomposable three-form Ω s.t.

Ω ∧ J = 0, 3i
4 Ω ∧ Ω = J ∧ J ∧ J = 3!dvol

where Jmn = −iη†+γmnη+, Ωmnp = −iη†−γmnpη+

Almost complex structure: Im
n ∼ εnk1..k5 ReΩmk1k2ReΩk3k4k5

J,Ω ⇒ metric gmn = Im
pJpn Hitchin:00

J,Ω closed ⇔ M6 is Calabi–Yau.

Otherwise non-zero torsion Chiossi–Salamon:02

dJ = − 3
2 Im(W1Ω) + W4 ∧ J + W3

dΩ = W1J ∧ J + W2 ∧ J + W 5 ∧ Ω
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4D N = 1 solutions from SU(3) structure manifolds

Remark:
many Calabi–Yau → many fluxless compactifications

Why so few explicit examples with flux?

SU(3) structure not enough: SUSY, BI and EOM selects Wi

Complications:

W1,W2 6= 0 ⇒ Im
p not integrable (non-complex)

W1,W4,W3 6= 0: not symplectic (non-Kähler)

Idea of this talk: Construct explicit SU(3) structures on CY manifolds.

Alternative: Construct non-explicit SU(3) structures as deformations of CY
Witten–Witten:87, Li–Yau:05, Andreas–Garcia-Fernandez:12
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4D Heterotic N = 1 Minkowski solutions: Equations

No flux: Calabi–Yau Candelas–Horowitz–Strominger–Witten:85

N = 1, Mkw, H = 0 ⇐⇒ X is Calabi–Yau, dilaton constant.

dJ = dΩ = 0,H = 0

With flux: Strominger–Hull system Strominger:86, Hull:86

N = 1, Mkw, H 6= 0 ⇐⇒ SU(3) structure on X with torsion:

d(e−2φJ ∧ J) = d(e−2φΩ) = 0,H = i(∂ − ∂̄)J

W0 = W2 = 0, W5 = 2W4 = 2dφ .

Heterotic vector bundle
N = 1 vector bundle V → X with connection A and field strength F must satisfy

F ∧ Ω = 0 , F ∧ J ∧ J = 0 .

Must also satisfy BI dH = α′

4 (tr(F ∧ F )− tr(R− ∧ R−))
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Construction of SU(3) structures on CY

Motivational example: the quintic

Hypersurface X ⊂ P4,

0 = P(x0, .., x4) = x5
0p(z1, .., z4) = 0 , za = xa

x0
in U0 : x0 6= 0

Inherit Kahler form: J0 = J |X
FS Kahler form J = i

2π
∂∂̄ lnκ, κ = 1 +

∑4
a=1 |za|2

Inherit hol. top form: Ω0 = dz1∧dz2∧dz3

p,4

Check SU(3) structure conditions:

J0 ∧ Ω0 = 0 but J0 ∧ J0 ∧ J0 = 3i
4 F Ω0 ∧ Ω̄0
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Construction of SU(3) structures on CY

Motivational example: the quintic

Inherit Kahler form: J0 = J |X and holomorphic top form: Ω0

J0 ∧ Ω0 = 0 but J0 ∧ J0 ∧ J0 = 3i
4 F Ω0 ∧ Ω̄0

Rescale forms to get SU(3) structure J = FkJ0 , Ω = F 3k+1
2 Ω0

Complex, non-Kahler manifold

W1 = W2 = W3 = 0 , W4 = k d(lnF) , W5 = 3k+1
2 d(lnF)

Strominger–Hull system if k = 1 , with flux

H = i(∂ − ∂̄)J = i(∂ − ∂̄) lnF ∧ J
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Construction of SU(3) structures on CY

Method generalizes to any favourable CICY

X ∼

 Pn1 q1
1 · · · q1

K

...
...

...
Pnm qm

1 · · · qm
K


h1,1,h2,1

η

,

E.g. for co-dim 1 CICY

1 Kahler form Ji = Ji |X from each Pni ⊂ A: J =
∑m

i=1 aiJi

Holomorphic top form: Ω0 = Ω̂|X
Ω̂ ∧ dP1 ∧ · · · ∧ dPK = µ1 ∧ · · · ∧ µm , µi = 1

ni !
εA0A1···Ani

xiA0dxiA1 ∧ · · · ∧ dxiAni

Check SU(3) structure:

J ∧ Ω0 = 0 X

Ji ∧ Jj ∧ Jk = 3i
4 Λijk Ω0 ∧ Ω̄0

Λijk =
cijk
6π3

[∏m
l=1
|∇lP|2nl
σl

]
(|∇iP|2|∇jP|2|∇kP|2σiσjσk )−1 , σi =

∑ni
A=0 |xiA|2
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Construction of SU(3) structures on CY

Example: SU(3) structure on tetraquadric

X ∼


P1 2
P1 2
P1 2
P1 2


4,68

−128

x1 = (x1 0, x1 1)
x2 = (x2 0, x2 1)
x3 = (x3 0, x3 1)
x4 = (x4 0, x4 1)

z1 = x1 1
x1 0

z2 = x2 1
x2 0

z3 = x3 1
x3 0

z4 = x4 1
x4 0

Hypersurface in (P1)4 set by P(x1, x2, x3, x4) = 0

1 FS Kähler forms: Ji = i
2π

dzi∧dz̄i
κ2
i

, κi = 1 + |zi |2

Restrict to tetra-quadric:
Jα = i dzα∧dz̄α

2πκ2
α

, J4 = i
2πκ2

4

∑3
α,β=1 vαv̄β dzα ∧ dz̄β with vα :=

p,α
p,4

, on U0

Holomorphic top form Ω0 = dz1∧dz2∧dz3

p,4

Check SU(3) structure J =
∑4

i=1 aiJi , Ω = AΩ0:

J ∧ Ω0 = 0 X
3i
4 Ω ∧ Ω = J ∧ J ∧ J ⇐⇒ |A|2 = a1a2a3a4

∑4
i=1 a

−1
i Λi

1
6
Λl := Λijk = 1

6π3

|pl |2κ2
l

κ2
1κ

2
2κ

2
3κ

2
4
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SU(3) structures on CY: Torsion classes

CICY SU(3) structure

J =
∑m

i=1 aiJi , Ω = AΩ0 subject to |A|2 =
∑m

i,j,k=1 Λijkaiajak

Torsion classes easily computed:

dJ =
m∑
i=1

dai ∧ Ji , dΩ = d ln(A) ∧ Ω

=⇒ W1 = W2 = 0 ,

W3 =
∑

i (dai −W4) ∧ Ji , W4 = 1
2

∑
i Jy(dai ∧ Ji ) , W5 = d ln(A).

Integrable complex structure with exact W5; rest set by ai

Metric and torsion explicit, and slightly tuneable by choosing ai .
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SU(3) structures on CY: Torsion classes

Universal CICY SU(3) structure

Choose ai = a ti for i = 1, . . . ,m

J = a J0 , J0 :=
m∑
i=1

tiJi , Ω = AΩ0

With g0,αβ̄ = −2iJ0,αβ̄ get

|A|2 = a3F , where F :=
m∑

i,j,k=1

Λijkti tj tk = |detB|2det
(
g0,αβ̄

)
> 0 .

Torsion classes

W1 = W2 = W3 = 0 , W4 = d ln a , W5 = d lnA =
3

2
d ln a +

1

2
d lnF .
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SU(3) structures on CY: Strominger–Hull system

In summary:
Any CICY allows a Universal SU(3) structure (J,Ω) with torsion

W1 = W2 = W3 = 0 , W4 = d ln a , W5 =
3

2
d ln a +

1

2
d lnF ,

where F :=
∑m

i,j,k=1 Λijkti tj tk = |detB|2det
(
g0,αβ̄

)
> 0, and metric

gαβ̄ = ag0,αβ̄ ,

Choose a = F : reproduce torsion for Strominger–Hull system with

H = i(∂ − ∂̄)F ∧ J0
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SU(3) structures on CY: Strominger–Hull system

Any CICY allows Strominger–Hull type SU(3) structure (J,Ω) with torsion

W1 = W2 = W3 = 0 , W4 = d lnF , W5 = 2d lnF ,

Right torsion is not enough: must construct suitable vector bundle and solve BI.

SUSY and bundle stability — Work in progress

SUSY ⇐⇒ holomorphic vector bundle V → X with HYM connection:

F ∧ Ω = 0 , F ∧ J ∧ J = 0 .

Li–Yau theorem: V → X allows HYM connection ⇐⇒ V → X is stable.

Donaldson’85, Uhlenbeck–Yau’86,Li–Yau’87, Kobayashi’87, Hitchin

Here: know J  solve for F .
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SU(3) structures on CY: Strominger–Hull system

Bianchi identity — Work in progress

2i ∂̄∂F ∧ J0 = dH = α′

4 (tr(F ∧ F )− tr(R ∧ R)) + ... ,

tr(R ∧ R)

Invariant under conformal re-scaling: tr(R ∧ R) = tr(R0 ∧ R0)
Computable but lack manageable form for general CICY.

tr(F ∧ F )

Construct stable vector bundle V → X with suitable connection A.
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SU(3) structures on CY: Strominger–Hull system

Example: tr(R ∧ R) on tetraquadric

X ∼


P1 2
P1 2
P1 2
P1 2


4,68

−128

x1 = (x1 0, x1 1)
x2 = (x2 0, x2 1)
x3 = (x3 0, x3 1)
x4 = (x4 0, x4 1)

z1 = x1 1

x1 0

z2 = x2 1

x2 0

z3 = x3 1

x3 0

z4 = x4 1

x4 0

Set z4 = f (z1, z2, z3), vα = p,α/p,4 , Ωβ
α = t1t2t3t4

tβ
∂̄
(

Λ4Λβ
FΛα

∂
(

Λα
Λ4

))
.

Compute curvature 2-form:

Rβα = −4πiJαδ
β
α −

vα
vβ

Ωβ
α

trR = ∂∂̄ ln det g0 X
Finally

tr(R ∧ R) =
3∑

α,β=1

(Rβα ∧ Rαβ ) + c.c. = 8πi
3∑

α=1

Jα ∧ Ωα
α +

3∑
α,β=1

Ωβ
α ∧ Ωα

β + c.c. .
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Conclusions and outlook

Conclusions

All CY manifolds allow several SU(3) structures

CICY: ambient space provide building blocks for non-trivial SU(3) structures

J =
∑m

i=1 aiJi , Ω = AΩ0 , subject to |A|2 =
∑m

i,j,k=1 Λijkaiajak

metric computable gmn = Im
kJkn

torsion computable:

W3 =
∑
i

(dai − aiW4) ∧ Ji , W4 =
1

2

∑
i

Jy(dai ∧ Ji ) , W5 = d ln(A) .

With ai = a ∀i =⇒ Strominger–Hull system, with dH 6= 0

Work on heterotic BI: compute tr(R ∧ R), construct vector bundles, ...
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Conclusions and outlook

Conclusions

Use ambient space forms to build complex SU(3) structures on CICY
Necessary constraints for e.g. Strominger–Hull system fulfilled

What we should do next:
Construct vector bundles with HYM connections satisfying heterotic BI

Explore “non-universal” SU(3) structures

Type IIB vacua: “smeared” sources required?

Extend construction: other types of CY manifolds, other dimensions, ...

Generalise method: non-complex SU(3) structures, ...
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Conclusions and outlook

Conclusions

Use ambient space forms to build complex SU(3) structures on CICY
Necessary constraints for e.g. Strominger–Hull system fulfilled

What we should do next:
Construct vector bundles with HYM connections satisfying heterotic BI

Explore “non-universal” SU(3) structures

Type IIB vacua: “smeared” sources required?

Extend construction: other types of CY manifolds, other dimensions, ...

Generalise method: non-complex SU(3) structures, ...

Thank You
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4D N = 1 solutions from SU(3) structure manifolds

4D geometry String vacuum
Non-vanishing
torsion

SU(3) type

N = 1 Mkw Heterotic, Type II (H3) W3,W4 = dφ,W5 = 2W4 Complex
Heterotic (H3 = 0) Wi = 0 , ∀i CY

N = 1 Mkw Type IIB 3W4 = 2W5 Conf. CY
(H3,F3,F5,O3/O7)
Type IIB W3,W4 = dφ,W5 = 2W4 Complex
(F3,O5/O9)
Type IIB/F-theory W4 = W5 = dφ Complex
(H3,F3,F5,O3/O7)

N = 1 Mkw Type IIA W2, 3W5 = dφ Symplectic
(F2,F4,O6)

N = 1 AdS Type IIA W+
1 ,W

+
2 , dW

+
2 ∝ Ω+ Half-flat

(H3,Feven)
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