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The Dose definition vy
£

ACCES REGLEMENTE
* The absorbed dose D by an organism is defined as the energy

(Joules) deposited in a mass unit (Kg).
D =dE/dm

In the international system unit, the dose unit is the Gray (Gy):
1Gy=1J/ke.

 The Gray is a unit that represents only the pure physical aspect
of the dose. When the biological effect of a radiation has to be

evaluated, we talk about the efficient dose and its unit is the
Sievert (Sv).
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Physics basis

Particle range (Distance after which the particle is stopped) : R= . —dFE

Bethe-Bloch Formula:
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where : z is the particle charge
e is the electron charge
n is the number of atoms per volume unit
Z is the atomic number of the target media
€, Is the media permittivity
m, is the electron mass
v is the particle velocity
I is the ionisation or excitation potential that depends of the media
c is the light velocity |
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Hadrontherapy

* Radiotherapy technique that consists in using heavy ions (protons, carbon ions) beams to

kill cancer cells.

e Advantage with respect to classical X-rays radiotherapy:
1. High balistic precision: hadrons stop at the level of the tumor produce less damage to

healthy tissues.
2. High treatment efficiency for some tumors (radio-resistive celles, Radiobiological

effect)



Bragg Peak

B Distribution of damage
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Spread-out Bragg Peak (SOBP)
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Straggling
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Passive beam shaping
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Dynamic beam shaping
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In situ dose control : inBeam PET

Pet detector |

Two anti-parallel 511
keV photons produced

Pet detector Il
InBeam PET problem:

2 detection heads: TEP | 1. Short periods 11-C (20 min), 15-O (2min), 10-C (10s)
' T 2. Low activities (~10 kBq), (Clinical PET ~250 MBq)
3. Static mode acquisition (3D ?)

Time Of Flight technology (TOF) improves the signal to noise ratio
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Improving 5pa’ria| resolution using the Time Of Flight
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In situ dose control: gamma prompts detection

Utilising gammas prompts produced by nuclear reactions
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In situ dose control: gamma prompts detection
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Radiobiology
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DNA induced damage by irradiation
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The Microdosimetric Kinetic Model

The Microdosimetric Kinetic model (MK model) is a biophysical model of cell survival after irradiations.
It assumes that the mean number of lethal lesions L in a domain can be described by a linear-quadratic function of

specific energy z, as follows:

N : is the total number of domains in a cell nucleus
L=Az+B7 <L>: is the average number of lethal lesions in a domain
Yp : is the single-event dose-mean lineal energy

p . is the domain density

rq: is the domain radius

S : is the survival fraction

Expectation:
L, =N(L)=N(A(z)+B(z*))
By
_ YD 2 Dose(Gy)
S|t pm'2 ]D+ PD 0 2 4 6 8 10 12
d
L0O00 S=iy——————

=aD+BD* =—InS
=
2
S 0.100 ¢
8 E
—
E
-
=
—

s i
Lineal dose: — 0.010 —
y= O Experiments 200kV X-rays
l — LQmodel with one free parameter (a alone)
“““““““ LQ model with two free parameter (« and )
0.001

Fig. 6. Comparison between the two methods of the fitting to sur-
vival fraction of the HSG tumor cells for 200 kV X-rays.
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Cell survival (dose, radiation type, tissues)

The cell surviving fraction rate is expressed as :
S(D) = exp (-(aD + BD?))
a/B is high for radio-sensitive celles
a/B is low for radio-resistive celles lso-dose
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Relative Biological Effectiveness :
Ratio between a reference radiation
and the considered radiation that
produces the same effect
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