

Dosimetry Radiotherapy-Hadrontherapy Radiobiology

Ziad El Bitar ziad.elbitar@iphc.cnrs.fr

The Dose definition

 The absorbed dose D by an organism is defined as the energy (Joules) deposited in a mass unit (Kg).

$$D = dE/dm$$

In the international system unit, the dose unit is the Gray (Gy):

$$1 \text{ Gy} = 1 \text{ J/kg}.$$

 The Gray is a unit that represents only the pure physical aspect of the dose. When the biological effect of a radiation has to be evaluated, we talk about the efficient dose and its unit is the Sievert (Sv).

Physics basis

Particle range (Distance after which the particle is stopped): $R = \int_0^{E_0} \frac{dx}{dE} dE$

Bethe-Bloch Formula:

$$-\frac{dE}{dx} = \frac{z^2 e^4 nZ}{4\pi\epsilon_0^2 m_e v^2} \left[ln(\frac{2m_e v^2}{I}) - ln(1 - \frac{v^2}{c^2}) - \frac{v^2}{c^2} \right]$$

where : z is the particle charge

e is the electron charge

n is the number of atoms per volume unit

Z is the atomic number of the target media

 ϵ_0 is the media permittivity

 m_e is the electron mass

v is the particle velocity

I is the ionisation or excitation potential that depends of the media c is the light velocity

Hadrontherapy

- Radiotherapy technique that consists in using heavy ions (protons, carbon ions) beams to kill cancer cells.
- Advantage with respect to classical X-rays radiotherapy:
 - 1. High balistic precision: hadrons stop at the level of the tumor produce less damage to healthy tissues.
 - 2. High treatment efficiency for some tumors (radio-resistive celles, Radiobiological effect)

Bragg Peak

x-ray beam irradiation

proton beam irradiation

Spread-out Bragg Peak (SOBP)

Straggling

Passive beam shaping

Dynamic beam shaping

In situ dose control: inBeam PET

InBeam PET problem:

- 1. Short periods 11-C (20 min), 15-O (2min), 10-C (10s)
- Low activities (~10 kBq), (Clinical PET ~250 MBq)
- Static mode acquisition (3D ?)

Time Of Flight technology (TOF) improves the signal to noise ratio

Improving spatial resolution using the Time Of Flight

$$\Delta x = 1.5 \ cm \longrightarrow \Delta t = 0.1 \ ns$$

https://www.swe.siemens.com

In situ dose control: gamma prompts detection

Utilising gammas prompts produced by nuclear reactions

SPECT Technology

Compton Camera

In situ dose control: gamma prompts detection

Radiobiology

DNA induced damage by irradiation

Cell Cycle

https://www2.le.ac.uk/projects/vgec/highereducation/topics/cellcycle-mitosis-meiosis

The Microdosimetric Kinetic Model

The Microdosimetric Kinetic model (MK model) is a biophysical model of cell survival after irradiations. It assumes that the mean number of lethal lesions L in a domain can be described by a linear-quadratic function of specific energy z, as follows:

$$L = Az + Bz^2$$

Expectation:

$$L_n = N\langle L \rangle = N(A\langle z \rangle + B\langle z^2 \rangle)$$

$$= \left(\alpha_0 + \frac{\beta y_D}{\rho \pi r_d^2}\right) D + \beta D^2$$

$$= \alpha D + \beta D^2 = -\ln S$$

Lineal dose:
$$y = \frac{\mathcal{E}}{I}$$

N: is the total number of domains in a cell nucleus

<L>: is the average number of lethal lesions in a domain

 y_D : is the single-event dose-mean lineal energy

 ρ : is the domain density r_d : is the domain radius

S: is the survival fraction

Fig. 6. Comparison between the two methods of the fitting to survival fraction of the HSG tumor cells for 200 kV X-rays.

Cell survival (dose, radiation type, tissues)

The cell surviving fraction rate is expressed as : $S(D) = \exp(-(\alpha D + \beta D^2))$ α/β is high for radio-sensitive celles α/β is low for radio-resistive celles

Iso-dose

Gamma = 7.5 Gy Neutrons = 3.8 Gy

RBE = 7.5 / 3.8 = 2

Relative Biological Effectiveness:

Ratio between a reference radiation and the considered radiation that produces the same effect