Lectures on calorimetry

Christophe Ochando (LLR/Ecole Polytechnique/CNRS)

Lecture 4

February 5th 2019, ESIPAP 2019 High Granularity Hybrid Timing and Energy Calorimetry

12P3

Plan of lectures

Lecture 1	Lecture 2
Why/what calorimeters ?	Example of Calorimeter
Physics of EM & HAD showers	Calorimeter Objects & Triggering
Calorimeter Energy Resolution	Exercises

Lecture 3

Future of calorimetry

Lecture 4

Example of calorimeters (suite)

Exercises

Calorimeters: example (suite)

Calorimeters in space: FERMI/LAT

Fermi Satellite with Large Area Telescope (LAT) instrument.

- Gamma-Ray Telescope
 - (200 MeV < γ < 300 GeV)
- Launched June 11 2008
- Consists of:
 - Tracker: Pb foils + Si strips
 - Calorimeter (see next slide)
 - Anticoincidence Detector : plastic scintillator tiles

Calorimeters in space: FERMI ECAL

Homogenous calorimeter made from 1728 CsI(TI) scintillating crystals

7 | incoming gamma ray

- > 18 modules (400mmx400mmx250mm) ~100 kg each
- 1 module:
 - carbon-fiber alveolar structure +
 - 96 Csl(Tl) crystals (2.7 cm x 2.0 cm x 32.6 cm)
 - arranged in 8 layers of 12 crystals each
- Each module aligned 90° wrt its neighbors, forming x,y (hodoscopic) array
 - Depth: 8.6 X₀ (10.1 including tracker)
 Need shower leakage correction

Calorimeters in space: AMS-02

> Alpha Magnetic Spectrometer (AMS):

- HEP-like detector operating as external module on ISS¹
- Launched in 2011
- Search for Dark Matter, anti-matter, precise study of high energy cosmic ray (flux, composition), gamma rays.

AMS: A TeV precision, multipurpose, magnetic spectrometer

The AMS-02 ECAL

Sampling calorimeter made from Lead + Scintillating fibers

3-D imaging of shower development

- 9 Super-Layers (SL) alternatively oriented along X and Y axis (5 SL along X, 4 long Y)
- ➤ 1 Super-Layer (~18.5mm):
 - 11 grooved, Pb foils (1mm thick) interleaved with 10 layers of scintillating fibers (Ø~1mm) glued by epoxy-resin

Depth: ~17 X0

Fibers read by PMT

ECAL support structure

Exercises (suite)

Useful Formulas (EM showers) [1]

Radiation Length:

Radiation Length for composite material:

 $X_0 \approx \frac{180A}{Z^2} \text{ (g.cm^{-2})}$

w_j: fraction of material j X_j: radiation length of material j (in g.cm-2)

Moliere Radius:

 $R_{M} = \frac{21MeV}{E_{C}}X_{0}$

Moliere Radius for composite material:

 $\frac{1}{R_M} = \sum \frac{w_j}{R_{M j}}$

w_j: fraction of material j R_{Mj}: Moliere Radius of material j (in g.cm-2)

Energy Resolution:

⊕ : quadratic sum
 S: Stochastic
 N: noise
 C: constant

Useful Formulas (EM showers) [2]

$$E_{c}(solid) = \frac{610 \text{ MeV}}{Z+1.24}$$

$$E_{c}(liquid) = \frac{710 \text{ MeV}}{Z+0.92}$$

$$E_{c}(liquid) = \frac{710 \text{ MeV}}{Z+0.92}$$

hower maximum
$$t_{\text{max}} = \frac{\ln E_0 / E_C}{\ln 2}$$

$$N(t_{\text{max}}) \approx \frac{E_0}{E_C}$$

Longitudinal containment: $t_{95\%} = t_{max} + 0.08Z + 9.6$

S

$$\frac{\sigma_E}{E} = 3.2\% \sqrt{\frac{E_c \; [\text{MeV}] \cdot t_{\text{abs}}}{F \cdot E \; [\text{GeV}]}}$$

(stochastic contribution)

t_{abs}: thickness of absorber (in units of X₀) F: factor (~0.2 for liquid noble gaz, 0.06 for Si, ~1 for scintillators) Take e- with E=100 GeV and E=1 TeV going through Cu (Z=29) and W(Z=74)

- 1) Compute the critical energy E_c for each material.
- 2) For each material and energy, where does the shower max occurs (in unit of X0)
 - Use the formula: $t_{max} = ln(E/E_c) t1$, t1=1 for e-, 0.5 for γ
- 3) Compute the 95% longitudinal containment (in unit of X0) in each case
- 4) Compute the Moliere Radius of each material.
- 5) Which material would you choose to build an EM calorimeter. Why?

Exercise: DØ Calorimeter

- 4) Compute the position of the shower max (in units of X0) for an electron with E=45 GeV (consider only Ur, Ec=65 MeV)
- 5) The EM part has four sections with different granularity and X0.
- Comment wrt to the result on question 4.

6) During RunII, a magnet was added before the calorimeters as well as a pre-shower (Pb/scintillating fibers). What is the impact on the shower max ? What are the consequences on the calorimetric performance ? What is the role of the pre-shower ?

Particle Flow & DØ

Can you imagine a Particle Flow algorithm with this detector? Why?

BACK UP SLIDES