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● Some physics models or cross-sections are data-driven, i.e. they need 
as input some phenomenogical data; others need as input the results
of intensive computations, which are done before the simulation

● If you build G4 with the option GEANT4_INSTALL_DATA  then the 
data-sets are automatically downloaded & installed

● Else (you want or need to do it manually, e.g. for older versions of G4) 
you need to install the data-sets yourself and then inform Geant4 
where they are by defining the following environmental variables, e.g. 
for the latest version G4 10.5 :

   export G4LEDATA=/dir-path/G4EMLOW7.7
   export G4LEVELGAMMADATA=/dir-path/PhotonEvaporation5.3
   export G4SAIDXSDATA=/dir-path/G4SAIDDATA2.0
   export G4PARTICLEXSDATA=/dir-path/G4PARTICLEXS1.1
   export G4ENSDFSTATEDATA=/dir-path/G4ENSDFSTATE2.2
   export G4NEUTRONHPDATA=/dir-path/G4NDL4.5
   export G4RADIOACTIVEDATA=/dir-path/RadioactiveDecay5.3
   export G4REALSURFACEDATA=/dir-path/RealSurface2.1.1
   export G4INCLDATA=/dir-path/G4INCL1.0
   export G4ABLADATA=/dir-path/G4ABLA3.1

G4 Datasets  (1)
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● G4LEDATA : low-energy electromagnetic data, mostly derived from 
Livermore data libraries; used in all EM options

● G4LEVELGAMMADATA : photon evaporation data, come from the 
Evaluated Nuclear Structure Data File (ENSDF); used by 
Precompound/de-excitation models (and RadioactiveDecay if present)

● G4SAIDXSDATA : data evaluated from the SAID database for 
nucleon and pion cross sections below 3 GeV; used in all physics lists  

● G4PARTICLEXSDATA : evaluated neutron (as well as proton, 
deuteron, triton, He3 and alpha) cross sections derived from G4NDL 
(G4PARTICLEHPDATA) by averaging in bin of energies; used in all 
physics lists

● G4ENSDFSTATEDATA : nuclear properties, from Evaluated 
Nuclear Structure Data File (ENSDF); used in all physics lists

G4 Datasets  (2)
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● G4REALSURFACEDATA : data for measured optical surface 
reflectance look-up tables; used only when optical physics is activated

● G4NEUTRONHPDATA : evaluated neutron data of cross sections, 
angular distributions and final-state information; come largely from the 
ENDF/B-VII library; used only in _HP physics lists

● G4RADIOACTIVEDATA : radioactive decay data, come from the 
ENSDF; used only when radioactive decay is activated

● G4INCLDATA : data for the intranuclear cascade model INCLXX

● G4ABLADATA : data for the ABLA de-excitation model, which is an  
alternative de-excitation available for INCLXX

● G4PARTICLEHPDATA : data for ParticleHP (p, d, t, He3, α);
                                              used only by QGSP_BIC_AllHP

G4 Datasets  (3)
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Electromagnetic physics (EM)
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Particle interactions
Each particle type has its own set of physics processes.
Only electromagnetic effects are directly measurable  
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Main electromagnetic processes
Gamma

● Conversion :
γ  ->  e+  e- ,  μ+  μ-

● Compton scattering : 
γ  (atomic)e-  ->  γ  (free)e-

● Photo-electric
γ  material  ->  (free)e-

● Rayleigh scattering
γ  atom  ->  γ  atom 

Electron, Positron
● Bremsstrahlung

e- (atom)  ->  e- γ

● MSC (Coulomb scattering): 
e-  atom  ->  e- atom

● Ionization :
e- atom  ->  e- ion+ e-

● Positron annihilation
e+ e-  ->  γ  γ 

Muon
● Pair production

μ- atom  ->  μ- e+ e- 

● Bremsstrahlung
μ- (atom)  ->  μ- γ

● MSC (Coulomb scattering) : 
μ-  atom  ->  μ- atom

● Ionization :
μ- atom  ->  μ- ion+ e- 

Charged hadron, ion
● (Bremsstrahlung

  h- (atom)  ->  h- γ )

● MSC (Coulomb scattering): 
h-  atom  ->  h- atom

● Ionization :
h- atom  ->  h- ion+ e- 

Total cross section:
step length

Differential & partial
cross sections :

final state 
(multiplicity & spectra)
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Multiple (Coulomb) scattering (MSC)

● Charged particles traversing a finite thickness of matter 
suffer a huge number (millions) of elastic Coulomb 
scatterings

● The cumulative effect of these small angle scatterings is 
mainly a net deflection from the original particle direction

● In most cases, to save CPU time, these multiple scatterings 
are not simulated individually, but in a “condensed” form

● Various algorithms exist, and new ones under 
development. One of the main differences between codes
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Electromagnetic physics
● Typical validity of electromagnetic physics  ≥ 1 keV ;

 for a few processes, extensions to lower energies

● CPU performance of electromagnetic physics is critical : 
significant effort to improve it

● Detailed validation of electromagnetic physics is necessary 
before the validation of hadronic physics

● Typical precision in electromagnetic physics is ~1%
● QED is extremely precise for elementary processes,

but atomic and medium effects, important for detector simulations, 
bring larger uncertainties...

● Moreover, the “condensed” description of multiple scattering 
introduces further approximations...

● Major effort to improve the models
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● Baseline (default, a.k.a. Opt0)
- Used in production by ATLAS
- Available in all reference physics lists, e.g. FTFP_BERT

● Fast (EMV, a.k.a. Opt1)
- Used in production by CMS: good for crystals, not for sampling calo
- Available in _EMV variants of physics lists

● Accurate (EMZ, a.k.a. Opt4)
- Used in medical and space science applications
- Available in _EMZ variants of physics lists

● Other options are available:
● _EMX (a.k.a. Opt2) : experimental, used by LHCb
● _EMY (a.k.a. Opt3) : as Opt0 but with more restricted stepping
● _LIV : models based on the Livermore database
● _PEN : Penelope models implemented in Geant4 

EM options
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● A photon is considered to be optical when its wavelength is 
greater than the typical inter-atomic distance

● In Geant4, for convenience, optical photons are treated as a 
separated particle class, G4OpticalPhoton, distinct from the 
class of high-energy photons, G4Gamma 

● Three processes in Geant4 can produce optical photons: 
Cerenkov effect, scintillation, and transition radiation

● Geant4 processes that can be associated to optical photons: 
refraction, reflection, absorption, scattering, wavelength shifting

● Optical properties of media (reflectivity, transmission, etc.) should 
be specified (in G4MaterialPropertiesTable linked to G4Material)

● For some examples, see: examples/extended/optical/

Optical Photons 
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Hadronic physics (HAD)
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● Hadrons (π±, K±, K°L , p, n, α, etc.), produced in jets and 
decays, traverse the detectors (H,C,Ar,Si,Al,Fe,Cu,W,Pb...)

● Therefore we need to model hadronic interactions
       hadron – nucleus  ->  anything
in our detector simulations

● In principle, QCD is the theory that describes all hadronic 
interactions; in practice, perturbative calculations are 
applicable only in a tiny (but important!) phase-space region

● the hard scattering at high transverse momentum

whereas for the rest, i.e. most of the phase space
● soft scattering, re-scattering, hadronization, nucleus de-excitation

 only approximate models are available

● Hadronic models are valid for limited combinations of
● particle type − energy − target material

Hadronic interactions
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Partial Hadronic Model Inventory
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String model Intra-nuclear cascade model

Pre-equilibrium (Precompound) model Equilibrium (Evaporation) model
15
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An interesting complication: Neutrons
● Neutrons are abundantly produced

● Mostly “soft” neutrons, produced by the de-excitation of nuclei, 
after hadron-nucleus interactions

● It is typically the 3rd most produced particle (after e-, γ)

● Before a neutron “disappears” via an inelastic interaction,
it can have many elastic scatterings with nuclei, and 
eventually it can “thermalize” in the environment

● The CPU time of the detector simulation can vary by an 
order of magnitude according to the physical accuracy of 
the neutron transportation simulation

● For typical high-energy applications, a simple treatment is 
enough (luckily!)

● For activation and radiation damage studies, a more precise, 
data-driven and isotope-specific treatment is needed, 
especially for neutrons of kinetic energy below ~ MeV
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● High Precision treatment of low-energy neutrons
● Ekin < 20 MeV , down to thermal energies
● Includes 4 types of interactions: 

radiative capture, elastic scattering, fission, inelastic scattering
● Based on evaluated neutron scattering data libraries

(pointed by the environmental variable G4NEUTRONHPDATA )

● It is precise, but very slow!

● It is not needed for most high-energy applications; useful for:
● cavern background, shielding, radiation damage, radio-protection

● Not used in most physics lists.
If you need it, use one of the _HP physics lists:
FTFP_BERT_HP , QGSP_BERT_HP , QGSP_BIC_(All)HP , 
Shielding(LEND)

Neutron-HP
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Hadronic showers
● A single hadron impinging on a large block of matter (e.g. a 

hadron calorimeter) produces secondary hadrons of lower 
energies, which in turn can produce other hadrons, and so 
on: the set of these particles is called a hadronic shower

● e-/e+/γ (electromagnetic component) are also produced copiously 
because of π° -> γ γ  and ionization of charged particles

● The development of a hadronic shower involves 
many energy scales, from hundreds of GeV down to
thermal energies
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The simulation of hadronic showers is an important 
ingredient for the simulation of jets

● The other ingredients are:
- the Monte Carlo event generator
- the experiment-specific aspects: geometry, digitization, pile-up

● Jets (= collimated sprays of hadrons) are produced by strong (QCD) or 
electroweak (hadronic decays of τ / W / Z / H ) interactions

● Jets can be part of the signal and/or the background
- multi-jets in the same event are typical in hadron colliders as LHC,
   but it is also frequent in high-energy e+-e- linear colliders as ILC/CLIC

● For future accelerators (e.g. LC (ILC/CLIC), FCC), the simulation
of jets is essential for the optimal design of the detector

● For ATLAS and CMS, the simulation of jets is now important for 
physics analysis

Jets
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Physics Lists
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● A class that collects all the particles, physics processes, and 
production thresholds needed by your application

● One and only one physics list should be present in each 
Geant4 application

● There is no default physics list: it should always be explicitly 
specified

● It is a very flexible way to build a physics environment:
-  Users can pick only the particles they need
-  Users can assign to each selected particle only the processes
    they are interested in

● But users must have a good understanding of the physics 
required in their application:
-  Omission of particles or physics processes will cause errors 
    or poor simulation

What is a Physics List ?
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Nature has just one “physics”: so why Geant4 does not 
provide a complete and unique set of particles and physics 
processes that everyone can use?

● There are many different physics models, corresponding to a 
variety of approximations of the real phenomena
-  very much the case for hadronic physics,
-  but also for electromagnetic physics.
According to the application, one can be better than another. 
Comparing them can give an idea of systematic errors.

● Simulation speed is important
-  Users may prefer a less detailed but faster approximation

● Often all the physics and particles are not needed:
-  e.g. most high-energy applications do not need a detailed  
   transportation of low-energy neutrons

Why do we need a Physics List ?
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● Writing a complete and realistic physics list for EM physics
and even more for hadronic physics is involved, and it
depends on the application. To make things easier, 
pre-packaged reference physics lists are provided by
Geant4, according to some reference use cases

● Few choices are available for EM physics (different
production cuts and/or multiple scattering configurations); 
several possibilities are available for hadronics physics: e.g.
FTFP_BERT, FTFP_BERT_HP, Shielding, FTFP_INCLXX, 
QGSP_FTFP_BERT, QGSP_BIC_EMY, etc.

● These lists are “best guess” of the physics needed in a
given case; they are intended as starting point (and their
builders can be re-used); users are responsible of
validating the physics lists for their application

Reference Physics Lists
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Recommended physics list for High-Energy Physics.
Its main components are the following:

● FTF (Fritiof string) model, above 3 GeV

● BERT (Bertini cascade) model, below 12 GeV

● Nucleus de-excitation: Precompound + evaporation 

● Neutron capture

● Nuclear capture of negatively charged hadrons at rest

● Hadron elastic

● Gamma- and electro-nuclear

● Standard electromagnetics

● NO : neutron-HP, radioactive decay, optical photons

FTFP_BERT



25

● FTFP_BERT_HP : as FTFP_BERT, but with NeutronHP for                 
                                neutrons of kinetic energy below 20 MeV

● Shielding : similar to FTFP_BERT_HP, but with Radioactive Decay
                     and QMD (Quantum Molecular Dynamics) for ions

– QMD used in the range [100 MeV, 10 GeV] : below BIC, above FTFP

● FTFP_INCLXX : similar to FTFP_BERT, but using INCLXX                  
                              instead of BERT for some particles

– Protons, neutrons, charged pions below 20 GeV; FTFP above 15 GeV

● QGSP_FTFP_BERT : similar to FTFP_BERT, but using QGS              
                                      (Quark Gluon String) model at high energies

– [6, 8] GeV transition BERT − FTFP ; [12, 25] GeV transition FTFP − QGSP

● QGSP_BIC : similar to FTFP_BERT but using QGS and BIC (Binary 
                         Cascade) instead of FTF and BERT when possible

– Protons, neutrons : BIC < 9.9 GeV , FTFP in [9.5, 25] GeV , QGSP > 12 GeV
Pions & kaons :      BERT < 5 GeV , FTFP in [   4, 25] GeV , QGSP > 12 GeV

A few other Physics Lists
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Let's consider the example of FTFP_BERT :
In your main program:

    #include "FTFP_BERT.hh"
    ...
    int main( int argc, char** argv ) {
       ...
       G4VModularPhysicsList* physicsList = new FTFP_BERT;
       runManager->SetUserInitialization( physicsList );
       ...
    }

How to use a reference Physics List
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● Adding radioactive decay :
In your main program:
   #include "G4RadioactiveDecayPhysics.hh"
    int main( int argc, char** argv ) {
       ...
       G4VModularPhysicsList* physicsList = new FTFP_BERT;
       physicsList->RegisterPhysics( new G4RadioactiveDecayPhysics );
       runManager->SetUserInitialization( physicsList );
       ...
    }

● Adding optical photon and its processes :
In your main program:
   #include "G4OpticalPhysics.hh"
    int main( int argc, char** argv ) {
       ...
       G4VModularPhysicsList* physicsList = new FTFP_BERT;
       physicsList->RegisterPhysics( new G4OpticalPhysics );
       runManager->SetUserInitialization( physicsList );
       ...
    }

How to add extra physics to a reference P.L.
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● Physics model = final-state generator
● Validated and tuned by Geant4 developers with thin-target data

● Physics process = cross section + final-state model
● Different physics models can share the same cross section

● Physics list = a list of physics processes associated to each 
                      particle present in the simulation

● Chosen by users: trade-off accuracy vs. speed
● Geant4 offers some reference physics lists ready to be used
● Validated by the users with (test-beam and/or collision) data

Recap: Model, Process, Physics List
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