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Introduction

Typical problems in HEP

Classification of objects

separate real and fake leptons/jets/etc.

Signal enhancement relative to background

Regression: best estimation of a parameter

lepton energy, /ET value, invariant mass, etc.

Discrimination of signal from background in HEP

Event level (Higgs searches, . . . )

Cone level (tau-vs-jet reconstruction, . . . )

Lifetime and flavour tagging (b-tagging, . . . )

Track level (particle identification, . . . )

Cell level (energy deposit from hard scatter/pileup/noise, . . . )

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 3/102



Introduction

Input information from various sources

Kinematic variables (masses, momenta, decay angles, . . . )

Event properties (jet multiplicity, sum of charges, brightness . . . )

Event shape (sphericity, aplanarity, . . . )

Detector response (silicon hits, dE/dx , Cherenkov angle, shower
profiles, muon hits, . . . )

Most data are (highly) multidimensional

Use dependencies between x = {x1, · · · , xn} discriminating variables

Approximate this n-dimensional space with a function f (x) capturing
the essential features

f is a multivariate discriminant

For most of these lectures, use binary classification:

an object belongs to one class (e.g. signal) if f (x) > q, where q is
some threshold,
and to another class (e.g. background) if f (x) ≤ q
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Optimal discrimination: 1-dimension case

Where to place a cut x0 on variable x?

Background density
p(x, B) = p(x|B) p(B)

Signal densitySignal density
p(x, S) = p(x|S) p(S)

x

p 
(x

) 
= 

p(
x
, 
S

) 
+ 

p(
x
, 
B

)

x
0

Optimal choice: minimum misclassification cost at decision boundary
x = x0
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Optimal discrimination: cost of misclassification

C (x0) = CS

∫
H(x0 − x)p(x , S)dx signal loss

+ CB

∫
H(x − x0)p(x ,B)dx background contamination

CS = cost of misclassifying signal as background
CB = cost of misclassifying background as signal

                             Background
                                  contamination
           Signal loss

x
0

H(x): Heaviside step
function

H(x) = 1 if x > 0,
0 otherwise

Optimal choice: when cost function C is minimum
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Optimal discrimination: Bayes discriminant

Minimising the cost

Minimise
C (x0) = CS

∫
H(x0 − x)p(x ,S)dx + CB

∫
H(x − x0)p(x ,B)dx

with respect to the boundary x0:

0 = CS

∫
δ(x0 − x)p(x , S)dx − CB

∫
δ(x − x0)p(x ,B)dx

= CSp(x0, S)− CBp(x0,B)

This gives the Bayes discriminant:

BD =
CB

CS
=

p(x0,S)

p(x0,B)
=

p(x0|S)p(S)

p(x0|B)p(B)

Probability relationships

p(A,B) = p(A|B)p(B) = p(B|A)p(A)

Bayes theorem: p(A|B)p(B) = p(B|A)p(A)

p(S |x) + p(B|x) = 1
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Optimal discrimination: Bayes limit

Generalising to multidimensional problem

The same holds when x is an n-dimensional variable:

BD = B
p(S)

p(B)
where B =

p(x |S)

p(x |B)

B is the Bayes factor, identical to the likelihood ratio when class
densities p(x |S) and p(x |B) are independent of unknown parameters

Bayes limit

p(S |x) = BD/(1 + BD) is what should be achieved to minimise cost,
achieving classification with the fewest mistakes

Fixing relative cost of background contamination and signal loss
q = CB/(CS + CB), q = p(S |x) defines decision boundary:

signal-rich if p(S |x) ≥ q
background-rich if p(S |x) < q

Any function that approximates conditional class probability p(S |x)
with negligible error reaches the Bayes limit
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Optimal discrimination: using a discriminant

How to construct p(S|x)?

k = p(S)/p(B) typically unknown

Problem: p(S |x) depends on k!

Solution: it’s not a problem. . .

Define a multivariate discriminant:

D(x) =
s(x)

s(x) + b(x)
=

p(x |S)

p(x |S) + p(x |B)

Now:

p(S |x) =
D(x)

D(x) +
(
1− D(x)

)
/k

Cutting on D(x) is equivalent to cutting on p(S |x), implying a
corresponding (unknown) cut on p(S |x)
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Machine learning: learning from examples

Several types of problems

Classification/decision:

signal or background
type Ia supernova or not
will pay his/her credit back on time or not

Regression (mostly ignored in these lectures)

Clustering (cluster analysis):

in exploratory data mining, finding features

Our goal

Teach a machine to learn the discriminant f (x) using examples from
a training dataset

Be careful to not learn too much the properties of the training sample

no need to memorise the training sample
instead, interested in getting the right answer for new events
⇒ generalisation ability
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Machine learning and connected fields

Machine Learning
Statistics

Optimization
Artificial intelligence

Neuroscience

Cognitive science

Signal processing

Information theory

c©Balàzs Kégl
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Machine learning and HEP

Center for Data Science

Paris-Saclay

the HiggsML challenge
May to September 2014

When High Energy Physics meets Machine Learning

Joerg Stelzer - Atlas-CERN
Marc Schoenauer - INRIA

Balázs Kégl - Appstat-LAL
Cécile Germain - TAO-LRI

David Rousseau - Atlas-LAL
Glen Cowan - Atlas-RHUL

Isabelle Guyon - Chalearn
Claire Adam-Bourdarios - Atlas-LAL

Thorsten Wengler - Atlas-CERN  
Andreas Hoecker - Atlas-CERN 

Organization committee Advisory committee

info to participate and compete : https://www.kaggle.com/c/higgs-boson
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Machine learning: (un)supervised learning
Supervised learning

Training events are labelled: N examples (x , y)1, (x , y)2, . . . , (x , y)N
of (discriminating) feature variables x and class labels y

The learner uses example classes to know how good it is doing

Reinforcement learning

Instead of labels, some sort of reward system (e.g. game score)

Goal: maximise future payoff

May not even “learn” anything from data, but remembers what
triggers reward or punishment

Unsupervised learning

e.g. clustering: find similarities in training sample, without having
predefined categories (how Amazon is recommending you books. . . )

Discover good internal representation of the input

Not biased by pre-determined classes ⇒ may discover unexpected
features!
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Machine learning

Finding the multivariate discriminant y = f(x)

Given our N examples (x , y)1, . . . , (x , y)N we need

a function class F =
{
f (x ,w)

}
(w : parameters to be found)

a constraint Q(w) on F
a loss or error function L(y , f ), encoding what is lost if f is poorly
chosen in F (i.e., f (x ,w) far from the desired y = f (x))

Cannot minimise L directly (would depend on the dataset used), but
rather its average over a training sample, the empirical risk:

R(w) =
1

N

N∑
i=1

L
(
yi , f (xi ,w)

)
subject to constraint Q(w), so we minimise the cost function:

C (w) = R(w) + λQ(w)

At the minimum of C (w) we select f (x ,w∗), our estimate of y = f (x)
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Choice of function class: training
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Data generated from an unknown function with unknown noise

c©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 15/102



Choice of function class: training
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Constant least squares fit, RMSE = 0.915

c©Balàzs Kégl
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Choice of function class: training
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Linear least squares fit, RMSE = 0.581
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Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 15/102



Choice of function class: training
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Quadratic least squares fit, RMSE = 0.579
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Choice of function class: training
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Cubic least squares fit, RMSE = 0.339
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Choice of function class: training
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PolyH6L least squares fit, RMSE = 0.278
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Choice of function class: training
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PolyH9 L least squares fit, RMSE =0
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Choice of function class

Quality of fit

Increasing degree of polynomial increases flexibility of function

Higher degree ⇒ can match more features

If degree = # points, polynomial passes through each point: perfect
match!

Is it meaningful?

It could be:

if there is no noise or uncertainty in the measurement
if the true distribution is indeed perfectly described by such a
polynomial

. . . not impossible, but not very common. . .

Solution: testing sample

Use independent sample to validate the result

Expected: performance will also increase, go through a maximum and
decrease again, while it keeps increasing on the training sample
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Choice of function class: testing
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Data generated from an unknown function with unknown noise
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Choice of function class: testing
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Const. least squares fit, training RMSE = 0.915, test RMSE = 1.067
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Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 17/102



Choice of function class: testing
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Linear least squares fit, training RMSE = 0.581, test RMSE = 0.734
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Choice of function class: testing
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Quadr. least squares fit, training RMSE = 0.579, test RMSE = 0.723
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Choice of function class: testing
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Cubic least squares fit, training RMSE = 0.339, test RMSE = 0.672
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Choice of function class: testing
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PolyH6L least squares fit, training RMSE = 0.278, test RMSE = 0.72
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Choice of function class: testing
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PolyH9 L least squares fit, training RMSE = 0, test RMSE = 46.424
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Choice of function class
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Training and test RMSE's for polynomial fits of different degrees
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Choice of function class

Non-parametric fit

Minimising the training cost (here, RMSE) does not work if the
function class is not fixed in advance (e.g. fix the polynomial degree):
complete loss of generalisation capability!

But if you do not know the correct function class, you should not fix
it! Dilemma. . .

Capacity control and regularisation

Trade-off between approximation error and estimation error

Take into account sample size

Measure (and penalise) complexity

Use independent test sample

In practice, no need to correctly guess the function class, but need
enough flexibility in your model, balanced with complexity cost
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Multivariate discriminants
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Multivariate discriminants

Reminder

To solve binary classification problem with the fewest number of
mistakes, sufficient to compute the multivariate discriminant:

D(x) =
s(x)

s(x) + b(x)
where:

s(x) = p(x |S) signal density
b(x) = p(x |B) background density

Cutting on D(x) is equivalent to cutting on probability p(S |x) that
event with x values is of class S

Which approximation to choose?

Best possible choice: cannot beat Bayes limit (but usually impossible
to define)

No single method can be proven to surpass all others in particular case

Advisable to try several and use the best one
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Cut-based analysis and grid search

Cut-based analysis

Simple approach: cut on each discriminating variable

Difficulty: how to optimise the cuts?

Grid search

x

y

c©Harrison Prosper

Split each variable in K values

Apply cuts at each grid point:
x > xi , y > yi

Number of points scales with
Kn: curse of dimensionality
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Random grid search
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H

Number of cut points
independent of dimensionality

Sampled points density follows
signal density

Use each point in signal sample
as grid point:

c©Harrison Prosper
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Random grid search example

c©Harrison Prosper

Comparison to BNN

Blue: 5-dim Bayesian neural
network discriminant (see later)

Points: each cut point from a
5-dim RGS calculation

Conclusions:

RGS can find very good
criteria with high
discrimination
but it usually cannot
compete with a full-blown
multivariate discriminant
and never outsmarts it
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Genetic algorithms: survival of the fittest

Inspired by biological evolution

Model: group (population) of abstract representations
(genome/discriminating variables) of possible solutions
(individuals/list of cuts)

Typical processes at work in evolutionary processes:

inheritance
mutation
sexual recombination (a.k.a. crossover)

Fitness function: value representing the individual’s goodness, or
comparison of two individuals

For cut optimisation:

good background rejection and high signal efficiency
compare individuals in each signal efficiency bin and keep those with
higher background rejection
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Genetic algorithms

Better solutions more likely to be selected for mating and mutations,
carrying their genetic code (cuts) from generation to generation

Algorithm:
1 Create initial random population (cut ensemble)
2 Select fittest individuals
3 Create offsprings through crossover (mix best cuts)
4 Mutate randomly (change some cuts of some individuals)
5 Repeat from 2 until convergence (or fixed number of generations)

Good fitness at one generation ⇒ average fitness in the next

Algorithm focuses on region with higher potential improvement
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Quadratic discriminants: Gaussian problem

Suppose densities s(x) and b(x) are multivariate Gaussians:

Gaussian(x |µ,Σ) =
1√

(2π)n|Σ|
exp

(
− 1

2
(x−µ)T Σ−1(x−µ)

)
with vector of means µ and covariance matrix Σ

Then Bayes factor B(x) = s(x)/b(x) (or its logarithm) can be
expressed explicitly:

lnB(x) = λ(x) ≡ χ2(µB ,ΣB)− χ2(µS ,ΣS)

Decision
boundary

with χ2(µ,Σ) = (x − µ)TΣ−1(x − µ)

Fixed value of λ(x) defines a
quadratic hypersurface partitioning
the n-dimensional space into
signal-rich and background-rich
regions

Optimal separation if s(x) and b(x)
are indeed multivariate Gaussians
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Quadratic discriminant

c©Balàzs Kégl
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Quadratic discriminant

c©Balàzs Kégl
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Quadratic discriminant

c©Balàzs Kégl
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Quadratic discriminant

c©Balàzs Kégl
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Linear discriminant: Fisher’s discriminant

If in λ(x) the same covariance matrix is used for each class (e.g.
Σ = ΣS + ΣB) one gets Fisher’s discriminant:

λ(x) = w · x with w ∝ Σ−1(µS − µB)

w

kxw #"

kxw $"

Optimal linear separation

Works only if signal and
background have different
means!

Optimal classifier (reaches the
Bayes limit) for linearly
correlated Gaussian-distributed
variables
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Support vector machines

Fisher discriminant: may fail completely for highly non-Gaussian
densities

But linearity is good feature ⇒ try to keep it

Generalising Fisher discriminant: data non-separable in n-dim space
Rn, but better separated if mapped to higher dimension space RH :
h : x ∈ Rn → z ∈ RH

Use hyper-planes to partition higher dim space: f (x) = w · h(x) + b

Example:h : (x1, y2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2 )

x1

x2

z1

z2

z3

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 30/102



Support vector machines: separable data

Consider separable data in RH , and three parallel hyper-planes:

w · h(x) + b = 0 (separating hyper-plane between red and blue)

w · h(x1) + b = +1 (contains h(x1))

w · h(x2) + b = −1 (contains h(x2))

Multivariate Discriminants,  Harrison B. Prosper 

plane: w.h(x

h(x1)

h(x2)

w

Subtract blue from red:
w ·
(
h(x1)− h(x2)

)
= 2

With unit vector ŵ = w/‖w‖:
ŵ ·
(
h(x1)− h(x2)

)
= 2/‖w‖ = m

Margin m is distance between red and
blue planes

Best separation: maximise margin

⇒ empirical risk margin to minimise:
R(w) ∝ ‖w‖2
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Support vector machines: constraints

When minimising R(w), need to keep signal and background
separated

Label red dots y = +1 (“above” red plane) and blue dots y = −1
(“below” blue plane)

Since: w · h(x) + b > 1 for red dots

w · h(x) + b < −1 for blue dots

all correctly classified points will satisfy constraints:

yi
(
w · h(xi ) + b

)
≥ 1, ∀i = 1, . . . ,N

Using Lagrange multipliers αi > 0, cost function can be written:

C (w , b, α) =
1

2
‖w‖2 −

N∑
i=1

αi

[
yi
(
w · h(xi ) + b

)
− 1
]
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Support vector machines

Minimisation

Minimise cost function C (w , b, α) with respect to w and b:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj
(
h(xi ) · h(xj)

)
At minimum of C (α), only non-zero αi correspond to points on red
and blue planes: support vectors

Kernel functions

Issues:

need to find h mappings (potentially of infinite dimension)
need to compute scalar products h(xi ) · h(xj)

Fortunately h(xi ) · h(xj) are equivalent to some kernel function
K (xi , xj) that does the mapping and the scalar product:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi , xj)
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Support vector machines: example

h : (x1, x2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2 )

h(x) · h(y) = (x2
1 ,
√

2x1x2, x
2
2 ) · (y2

1 ,
√

2y1y2, y
2
2 )

= (x · y)2

= K (x , y)

x1

x2

z1

z2

z3

In reality: do not know a priori the right kernel

⇒ have to test different standard kernels and use the best one
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Support vector machines: non-separable data

Even in infinite dimension space, data are often non-separable

Need to relax constraints:

yi
(
w · h(xi ) + b

)
≥ 1− ξi

x1

x2

margin 

support 
vectors

S
ep

ar
ab

le
 d

at
a

optimal hyperplane

N
on

-s
ep

ar
ab

le
 d

at
a

ξ1

ξ2

ξ4

ξ3

with slack variables ξi > 0

C (w , b, α, ξ) depends on ξ,
modified C (α, ξ) as well

Values determined during
minimisation
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Kernel density estimation (KDE)

Introduced by E. Parzen in the 1960s

Place a kernel K (x , µ) at each training point µ

Density p(x) at point x approximated by:

p(x) ≈ p̂(x) =
1

N

N∑
j=1

K (x , µj)
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Kernel density estimation (KDE)

Choice of kernel

Any kernel can be used

In practice, often product of Gaussians:

K (x , µ) =
n∏

i=1

Gaussian(xi |µ, hi )

each with bandwidth (width) hi

Optimal bandwidth

Too narrow: noisy approximation

Too wide: loose fine structure

In principle found by minimising risk function
R(p̂, p) =

∫ (
p̂(x)− p(x)

)2
dx

For Gaussian densities:

h = σ

(
4

(n + 2)N

)1/(n+4)

Far from optimal for non-Gaussian densities
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Kernel density estimation (KDE): example

with Gaussian optimal bandwidth
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Kernel density estimation (KDE)

Why does it work?

When N →∞:

p̂(x) =

∫
K (x , µ)p(µ)dµ

p(µ): true density of x

Kernel bandwidth getting smaller with N, so when N →∞,
K (x , µ)→ δn(x − µ) and p̂(x) = p(x)

KDE gives consistent estimate of probability density p(x)

Limitations

Choice of bandwidth non-trivial

Difficult to model sharp structures (e.g. boundaries)

Kernels too far apart in regions of low point density

(both can be mitigated with adaptive bandwidth choice)

Requires evaluation of N n-dimensional kernels
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Kernel density estimation (KDE)

c©Balàzs Kégl
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Kernel density estimation (KDE)

c©Balàzs Kégl
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KDE: choice of bandwidth

Overfitting

Underfitting
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c©Balàzs Kégl
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Neural networks

Human brain

1011 neurons

1014 synapses

Learning:
modifying synapses
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Brief history of artificial neural networks

1943: W. McCulloch and W. Pitts explore capabilities of networks of
simple neurons

1958: F. Rosenblatt introduces perceptron (single neuron with
adjustable weights and threshold activation function)

1969: M. Minsky and S. Papert prove limitations of perceptron
(linear separation only) and (wrongly) conjecture that multi-layered
perceptrons have same limitations
⇒ ANN research almost abandoned in 1970s!!!

1986: Rumelhart, Hinton and Williams introduce “backward
propagation of errors”: solves (partially) multi-layered learning

Next: focus on multilayer perceptron (MLP)
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Single neuron

Remember linear separation (Fisher discriminant):
λ(x) = w · x =

∑n
i=1 wixi + w0

Boundary at λ(x) = 0

Replace threshold boundary by sigmoid (or tanh):

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1/(1+exp(-x))

λ→ σ(λ) =
1

1 + e−λ

1

i

n

 

w1

wi

wn

:

:

σ(λ) is neuron activity, λ is activation

Neuron behaviour completely controlled by weights w = {w0, . . . ,wn}
Training: minimisation of error/loss function (quadratic deviations,
entropy [maximum likelihood]), via gradient descent or stochastic
approximation
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Neural networks

Theorem

Let σ(.) be a non-constant, bounded, and monotone-increasing continuous
function. Let C(In) denote the space of continuous functions on the
n-dimensional hypercube. Then, for any given function f ∈ C(In) and
ε > 0 there exists an integer M and sets of real constants wj ,wij where
i = 1, . . . , n and j = 1, . . . ,M such that

y(x ,w) =
M∑
j=1

wjσ

(
n∑

i=1

wijxi + w0j

)

is an approximation of f (.), that is |y(x)− f (x)| < ε

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 45/102



Neural networks

Interpretation

You can approximate any continuous function to arbitrary precision
with a linear combination of sigmoids

Corollary 1: can approximate any continuous function with neurons!

Corollary 2: a single hidden layer is enough

Corollary 3: a linear output neuron is enough

Multilayer perceptron: feedforward network

Neurons organised in layers

Output of one layer becomes input
to next layer

yk(x ,w) =
M∑
j=0

w
(2)
kj σ

(
n∑

i=0

w
(1)
ji xi

)
︸ ︷︷ ︸

zj
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A neural network can fit any function: examples

1 input (training data), 1 output

3 hidden neurons on one hidden layer

c©Jan Therhaag

Any continuous function can be 

determined by number of hidden 

units (neurons) and characteristic 

z!
z!
z!

training data 

output 
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Backpropagation

Training means minimising error
function E (w)

For single neuron: dE
dwk

= (y − t)xk

One can show that for a network:

dE

dwji
= δjzi , where

δk = (yk − tk) for output neurons

δj ∝
∑
k

wkjδk otherwise

Hence errors are propagated backwards
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Neural network training

Minimise error function E (w)

Gradient descent: w (k+1) = w (k) − η dE (k)

dw

∂E
∂wj

=
∑N

n=1−(t(n) − y (n))x
(n)
j with target t(n) (0 or 1), so t(n) − y (n)

is the error on event n

All events at once (batch learning):

weights updated all at once after processing the entire training sample
finds the actual steepest descent
takes more time

or one-by-one (online learning):

speeds up learning
may avoid local minima with stochastic component in minimisation
careful: depends on the order of training events

One epoch: going through the training data once
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Neural network overtraining
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Diverging weights can cause overfitting

Mitigate by:

early stopping (after a fixed number of epochs)
monitoring error on test sample
regularisation, introducing a “weight decay” term to penalise large
weights, preventing overfitting:

Ẽ (w) = E (w) +
α

2

∑
i

w2
i

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 50/102



Regularisation

10 hidden nodes 10 hidden nodes and α = 0.04

c©Jan Therhaag

Much less overfitting, better generalisation properties
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Neural networks: Tricks of the trade Efficient BackProp

Preprocess data:

if relevant, provide e.g. x/y instead of x and y
subtract the mean because the sigmoid derivative becomes negligible
very fast (so, input mean close to 0)
normalise variances (close to 1)
shuffle training sample (order matters in online training)

Initial random weights should be small to avoid saturation

Batch/online training: depends on the problem

Regularise weights to minimise overtraining. May also help select
good variables via Automatic Relevance Determination (ARD)

Make sure the training sample covers the full parameter space

No rule (not even guestimates) about the number of hidden nodes
(unless using constructive algorithm, adding resources as needed)

A single hidden layer is enough for all purposes, but multiple hidden
layers may allow for a solution with fewer parameters
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Adding a hidden layer

2-20-1 network
(81 parameters)

2-50-1 network
(201 parameters)

2-10-2-1 network
(55 parameters)
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Bayesian neural networks

As name says: Bayesian approach, try to infer functions f (x)

Training sample T of N examples (x , y)1, (x , y)2, . . . , (x , y)N of
discriminating variables x and class labels y

Each point w corresponds to a function f (x ,w)

Assign probability density p(w |T ) to it

If p(w1|T ) > p(w2|T ), then associated function f (x ,w1) more
compatible with training data T than function f (x ,w2)

Posterior density p(w |T ) is final result of Bayesian inference

BNN is the predictive distribution

p(y |x ,T ) =

∫
p(y |x ,w)p(w |T )dw

where the function class is class of feedforward neural networks with a
fixed structure (inputs, layers, hidden nodes, outputs)
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Bayesian neural networks

Take the mean of the predictive distribution:

y(x) =

∫
zp(z |x ,T )dz

=

∫
f (x ,w)p(w |T )dw

Why? For classification p(y |x ,w) = f (x ,w)y
(
1− f (x ,w)

)1−y

for y = 1: p(y |x ,w) = f (x ,w)
for y = 0: p(y |x ,w) = 1− f (x ,w)
so only f (x ,w) contributes to the mean

Example usage:
f (x ,w) =

1

1 + e−g(x ,w)

g(x ,w) = b +
H∑
j=1

vj tanh

(
aj +

n∑
i=1

uijxi

)
with H hidden nodes
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Bayesian neural networks

Scanning NN parameter space can be daunting

Can approximate integral in y(x) using Markov chain Monte Carlo
method (MCMC)

Will generate M sample weights w1, . . . ,wM from posterior density
p(w |T )

y(x) ≈ 1
M

∑M
m=1 f (x ,wm)

Use spare subset of MCMC points to avoid correlations

Start with “reasonable” guesses for parameters (e.g. zero-centred
Gaussians)
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Bayesian neural networks: example

x

tqb

Wbb

x

)

, 1-D histograms

Individual functions

points: bin by bin histogram ratio

thin curves: each f (x ,wk)

thick curve: average, which approximates D(x)
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Deep learning

What is learning?

Ability to learn underlying and previously unknown structure from
examples
⇒ capture variations

Deep learning: have several hidden layers (> 2) in a neural network

Motivation for deep learning

Just like in the brain!

Humans organise ideas hierarchically, through composition of simpler
ideas

Heavily unsupervised training, learning simpler tasks first, then
combined into more abstract ones

Learn first order features from raw inputs, then patterns in first order
features, then etc.
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Deep architecture in the brain
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Deep learning in artificial intelligence

Mimicking the brain

About 1% of neurons active simultaneously in the brain:
distributed representation

activation of small subset of features, not mutually exclusive
more efficient than local representation
distributed representations necessary to achieve non-local
generalization, exponentially more efficient than 1-of-N enumeration
example: integers in 1..N

local representation: vector of N bits with single 1 and N-1 zeros
distributed representation: vector of log2 N bits (binary notation),
exponentially more compact

Meaning: information not localised in particular neuron but
distributed across them

Deep architecture

Insufficient depth can hurt

Learn basic features first, then higher level ones

Learn good intermediate representations, shared across tasks
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Deep learning revolution

Deep networks were unattractive

One layer is theoretically enough for everything

Used to perform worse than shallow networks with 1 or 2 hidden layers

Apparently difficult/impossible to train (using random initial weights
and supervised learning with backpropagation)
Backpropagation issues:

requires labelled data (usually scarce and expensive)
does not scale well, getting stuck in local minima
“vanishing gradient”: gradients getting very small further away from
output ⇒ early layers do not learn much, can even penalise overall
performance

Breakthroughs around 2006 (Bengio, Hinton, LeCun)

Try to model structure of input, p(x) instead of p(y |x)

Can use unlabelled data (a lot of it), with unsupervised training

Train each layer independently (pre-train and stack)

New activation functions (e.g. rectified linear unit ReLU)

Possible thanks to algorithmic innovations, computing resources, data!
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Greedy layer-wise pre-training

Algorithm

Take input information

Train feature extractor

Use output as input to training another feature extractor

Keep adding layers, train each layer separately

Finalise with a supervised classifier, taking last feature extractor
output as input

All steps above: pre-training
Fine-tune the whole thing with supervised training (backpropagation)

initial weights are those from pre-training

Feature extractors

Restricted Boltzmann machine (RBM), auto-encoder, sparse
auto-encoder, denoising auto-encoder, etc.

Note: important to not use linear activation functions in hidden
layers. Combination of linear functions still linear, so equivalent to
single hidden layer
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Why does unsupervised training work?

Optimisation hypothesis

Training one layer at a time
scales well

Backpropagation from sensible
features

Better local minimum than
random initialisation, local
search around it

Overfitting/regularisation
hypothesis

More info in inputs than labels

No need for final discriminant
to discover features

Fine-tuning only at category
boundaries

Example
Stacked denoising auto-encoders

10 million handwritten digits

First 2.5 million used for
unsupervised pre-training
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3–layer net, budget of 10000000 iterations

0 unsupervised + 10000000 supervised

2500000 unsupervised + 7500000 supervised

Worse with supervision: eliminates
projections of data not useful for
local cost but helpful for deep
model cost
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An example from Google research team 2011 paper

A “giant” neural network

At Google they trained a 9-layered NN with 1 billion connections

trained on 10 million 200×200 pixel images from YouTube videos
on 1000 machines (16000 cores) for 3 days, unsupervised learning

Sounds big? The human brain has 100 billion (1011) neurons and 100
trillion (1014) connections...

What it did

It learned to recognise faces, one of the original goals

. . . but also cat faces (among the most popular things in YouTube
videos) and body shapes
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Google’s research on building high-level features

Features extracted from
such images

Results shown to be
robust to

colour
translation
scaling
out-of-plane rotation
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Learning feature hierarchy
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Auto-encoders

Approximate the identity function

Build a network whose output is
similar to its input

Sounds trivial? Except if imposing
constraints on network (e.g., # of
neurons, locally connected network)
to discover interesting structures

Can be viewed as lossy compression
of input

Finding similar books

Get count of 2000 most common
words per book

“Compress” to 10 numbers
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Auto-encoders

With principle component analysis
(PCA)

With autoencoder
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Other auto-encoders

Sparse auto-encoder

Sparsity: try to have low activation of neurons (like in the brain)

Compute average activation of each hidden unit over training set

Add constraint to cost function to make average lower than some
value close to 0

Denoising auto-encoder

Stochastically corrupt inputs

Train to reconstruct
uncorrupted input

Locally connected auto-encoder

Allow hidden units to connect only to small subset of input units

Useful with increasing number of input features (e.g., bigger image)

Inspired by biology: visual system has localised receptive fields
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Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers
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Convolutional networks
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Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers
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Deep learning: looking forward

Very active field of research in machine learning and artificial
intelligence

not just at universities (Google, Facebook, Microsoft, NVIDIA, etc. . . )
Training with curriculum:

what humans do over 20 years, or even a lifetime
learn different concepts at different times
solve easier or smoothed version first, and gradually consider less
smoothing
exploit previously learned concepts to ease learning of new abstractions

Influence learning dynamics can have big impact:
order and selection of examples matters
choose which examples to present first, to guide training and possibly
increase learning speed (called shaping in animal training)

Combination of deep learning and reinforcement learning
still in its infancy, but already impressive results

Domain adaptation and adversarial training
e.g. train in parallel network that produces difficult examples
learn discrimination (s vs. b) and difference between training and
application samples (e.g. Monte Carlo simulation and real data)
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Domain adaptation and adversarial training

Typical training http://arxiv.org/abs/1409.7495

signal and background from simulation http://arxiv.org/abs/1505.07818

results compared to real data to make measurement

Requires good data–simulation agreement

Possibility to use adversarial training and domain adaptation to
account for discrepancies/systematic uncertainties
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Deep learning: second half of 2018 trends

Most used software Most activity

https://www.kdnuggets.com/2018/12/deep-learning-major-advances-review.html
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ILSVRC 2014 Summary paper

ImageNet Large Scale Visual Recognition Challenge

ImageNet: database with 14 million images and 20k categories

Used 1000 categories and about 1.3 million manually annotated
images

PASCAL ILSVRC

· · ·

· · ·

· · ·
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ILSVRC 2014 images
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ILSVRC 2014 images
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ILSVRC 2014 tasks
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ILSVRC 2014 And the winner is. . .

Google of course! (first time)
GoogLeNet:
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ILSVRC 2014 And the winner is. . .

Google of course! (first time)

GoogLeNet:

256 480 480
512

512 512
832 832 1024

9 Inception modules
Convolution
Pooling
Softmax
OtherNetwork in a network in a network...
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ILSVRC 2014 Even GoogLeNet is not perfect!
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ILSVRC 2010–2016

2010–14: 4.2x reduction 1.7x reduction 1.9x increase

ILSVRC 2015 (same dataset as 2014) arXiv:1512.03385

Winner: MSRA (Microsoft Research in Beijing)

Deep residual networks with > 150 layers

Classification error: 6.7% → 3.6% (1.9x)

Localisation error: 26.7% → 9.0% (2.8x)

Object detection: 43.9% → 62.1% (1.4x)

identity

weight layer

weight layer

relu

relu
F(x) + x

x

F(x)
x

ILSVRC 2016 http://image-net.org/challenges/LSVRC/2016

Mostly ResNets. Classification: 0.030; localisation: 0.08; detection: 0.66
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MSRA @ ILSVRC2015

Revolution of Depth

3.57

6.7 7.3

11.7

16.4

25.8

28.2

ILSVRC'15

ResNet

ILSVRC'14

GoogleNet

ILSVRC'14

VGG

ILSVRC'13 ILSVRC'12

AlexNet

ILSVRC'11 ILSVRC'10

ImageNet Classification top-5 error (%)

shallow8 layers

19 layers22 layers

152 layers

8 layers
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Going further
More and more refinement (segmentation)
More objects, in real time on video1/video2/video3
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Google DeepMind: arcade games Nature 518, 529 (2015)

Learning to play 49 different Atari 2600 games

No knowledge of the goals/rules, just 84x84 pixel frames

60 frames per second, 50 million frames (38 days of game experience)

Deep convolutional network with reinforcement: DQN (deep
Q-network)

action-value function Q
�
s,að Þ~max

p

rtzcrtz1zc
2
rtz2z . . . jst~s, at~a, p

� �

,

maximum sum of rewards rt discounted by γ at each timestep t,
achievable by a behaviour policy π = P(a|s), after making observation
s and taking action a

Tricks for scalability and performance:

experience replay (use past frames)
separate network to generate learning targets (iterative update of Q)

Outperforms all previous algorithms, and professional human player
on most games
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Google DeepMind: training&performance
Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights h

Initialize target action-value function Q̂ with weights h25 h

For episode5 1,M do

Initialize sequence s1~ x1f g and preprocessed sequence w1~w s1ð Þ
For t5 1,T do

With probability e select a random action at
otherwise select at~argmaxaQ w stð Þ,a; hð Þ
Execute action at in emulator and observe reward rt and image xt1 1

Set stz1~st ,at ,xtz1 and preprocess wtz1~w stz1ð Þ
Store transition wt ,at ,rt ,wtz1

ÿ �

in D

Sample random minibatch of transitions wj,aj,rj,wjz1

� �

from D

Set yj~
rj if episode terminates at step jz1

rjzc maxa0 Q̂ wjz1,a
0; h{

� �

otherwise

(

Perform a gradient descent step on yj{Q wj,aj; h
� �� �2

with respect to the
network parameters h

Every C steps reset Q̂~Q

End For

End For

What about Breakout or Space invaders?
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Google DeepMind: mastering Go Nature 529, 484 (2016)

Game of Go considered very challenging for AI

Board games: can be solved with search tree of bd possible sequences
of moves (b = breadth [number of legal moves], d = depth [length of
game])

Chess: b ≈ 35, d ≈ 80 → go: b ≈ 250, d ≈ 150

Reduction:

of depth by position evaluation (replace subtree by approximation that
predicts outcome)
of breadth by sampling actions from probability distribution (policy
p(a|s)) over possible moves a in position s

19× 19 image, represented by CNN

Supervised learning policy network from expert human moves,
reinforcement learning policy network on self-play (adjusts policy
towards winning the game), value network that predicts winner of
games in self-play.

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 85/102

http://doi.org/10.1038/nature16961


Google DeepMind: AlphaGo Nature 529, 484 (2016)

AlphaGo: 40 search threads, simulations on 48 CPUs, policy and value
networks on 8 GPUs. Distributed AlphaGo: 1020 CPUs, 176 GPUs

AlphaGo won 494/495 games against other programs (and still 77% against
Crazy Stone with four handicap stones)

Fan Hui: 2013/14/15 European champion

Distributed AlphaGo won 5–0

AlphaGo evaluated thousands of times fewer
positions than Deep Blue (first chess computer
to bit human world champion) ⇒ better
position selection (policy network) and better
evaluation (value network)
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Then played Lee Sedol (top Go play in the world over last decade) in March
2016 ⇒ won 4–1. AlphaGo given honorary professional ninth dan,
considered to have “reach a level ‘close to the territory of divinity’ ”

Ke Jie (Chinese world #1): “Bring it on!”. May 2017: 3–0 win for AlphaGo.
New comment: “I feel like his game is more and more like the ‘Go god’.
Really, it is brilliant”
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DeepMind AlphaGo Zero Nature 550, 354 (2017)

Learn from scratch, just from the rules and random moves

Reinforcement learning from self-play, no human data/guidance

Combined policy and value networks

4.9 million self-play games

Beats AlphaGo Lee (several months of training) after just 36 hours

Single machine with four TPU
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DeepMind AlphaZero arXiv:1712.01815 [cs.AI]

Same philosophy as AlphaGo Zero, applied to chess, shogi and go

Changes:

not just win/loss, but also draw or other outcomes
no additional training data from game symmetries
using always the latest network to generate self-play games rather than
best one
tree search: 80k/70M for chess AlphaZero/Stockfish, 40k/35M for
shogi AlphaZero/Elmo
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DeepMind AlphaFold Blog Dec 2018

Trying to tackle scientific problem
Goal: predict 3D structure of protein based solely on genetic sequence
Using DNN to predict

distances between pairs of amino acids
angles between chemical bonds

Then search DB to find matching existing substructures
Also train a generative NN to invent new fragments
Achieved best prediction ever
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DeepMind AlphaStar Blog Jan 2019

Mastering real-time strategy game StarCraft II

Challenges in game theory (no single best strategy), imperfect information (hidden
parts of game), long term planning, real time (continuous flow of actions), large
action space (many units/buidings)

Using DNN trained

directly on raw data games
supervised learning on human games
reinforcement learning (continuous league)

DNN output: list of actions

Trained for 14 days; each agent: up to 200 years of real-time play

Runs on single desktop GPU

Defeated 5–0 one of best pro-players
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Deep networks: new results all the time

Playing poker

Libratus (AI developed by Carnegie Mellon University) defeated four of
the world’s best professional poker players (Jan 2017)
After 120,000 hands of Heads-up, No-Limit Texas Hold’em, led the
pros by a collective $1,766,250 in chips
Learnt to bluff, and win with incomplete information and opponents’
misinformation

Lip reading arXiv:1611.05358 [cs.CV]

human professional: deciphers less than 25% of spoken words
CNN+LSTM trained on television news programs: 50%

Limitations arXiv:1312.6199 [cs.CV]

left: correctly classified image

middle: difference between left image and
adversarial image (x10)

right: adversarial image, classified as ostrich
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Hype cycle
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Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 93/102



Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 93/102



Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 93/102



Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 93/102



Machine learning and particle physics

http://opendata.cern.ch

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 93/102



Machine learning and particle physics

http://opendata.cern.ch

https://sites.google.com/site/trackmlparticle
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Machine learning and particle physics

Going to lower level features arXiv:1410.3469

Transforming inputs into images arXiv:1511.05190

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 94/102

http://arxiv.org/abs/1410.3469
https://arxiv.org/abs/1511.05190


Machine learning and particle physics

Going to lower level features arXiv:1410.3469

Transforming inputs into images arXiv:1511.05190

Yann Coadou (CPPM) — Machine learning ESIPAP’19, Archamps, 4 Feb 2019 94/102

http://arxiv.org/abs/1410.3469
https://arxiv.org/abs/1511.05190


Machine learning and particle physics

Generative adversarial networks (GAN) ATLAS PUB note ATL-SOFT-PUB-2018-001

Attempts to decrease CPU cost of simulation
limiting factor in many analyses already
not enough simulated events

Replace “full simulation” by objects generated automatically by GAN
or variational auto-encoders (VAE)
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Decision trees

Next lecture
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Conclusion

When trying to achieve optimal discrimination one can try to
approximate

D(x) =
s(x)

s(x) + b(x)

Many techniques and tools exist to achieve this

(Un)fortunately, no one method can be shown to outperform the
others in all cases.

One should try several and pick the best one for any given problem

Latest machine learning algorithms (e.g. deep networks) require
enormous hyperparameter space optimisation. . .

Machine learning and multivariate techniques are at work in your
everyday life without your knowning and can easily outsmart you for
many tasks
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Deep networks and art

Learning a style arXiv:1508.06576 [cs.CV] Neural-style

Computer dreams Google original

deepdream

Face Style http://facestyle.org

http://dcgi.fel.cvut.cz/home/sykorad/facestyle.html
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Deep networks and art

Artistic style transfer for videos
https://lmb.informatik.uni-freiburg.de/Publications/2018/RDB18/
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