Jérôme Baudot
(baudot@in2p3.fr)

30 January 2019, Archamps

Tracking
Hypothesis:

- Two sensors
 - perfect positions
 - Infinitely thin
- 1 straight tracks
 - 2 parameters \((a, b)\)

Estimation of track parameters

- Assuming track model is straight

- No uncertainty!

\[
a = \frac{x_1}{z_1} \frac{x_0}{z_0}, \quad b = \frac{x_0z_1}{z_1} \frac{x_1z_0}{z_0}
\]
What are we talking about?

Hypothesis:

- Two sensors
 - Positions with UNCERTAINTY σ_{det}
 - Infinitely thin
- 1 straight tracks
 - 2 parameters (a, b)

Estimation of track parameters

- Assuming track model is straight
- Uncertainties from error propagation

$$a = \frac{z_1}{z_1} \times_0 \times_1, \quad b = \frac{z_0 z_1}{z_0} \times_0 \times_1$$

$$a = \frac{\sqrt{2}}{z_1} \times_0 \times_1 \quad \text{det}, \quad b = \frac{\sqrt{z_1^2 + z_0^2}}{z_1} \times_0 \times_1 \quad \text{det}$$

$$\text{cov}_{a, b} = \frac{\sqrt{z_1 + z_0}}{z_1} \times_0 \times_1 \quad \text{det}$$
Hypothesis:

- More than two sensors
 - Positions with uncertainty σ_{det}
 - Infinitely thin
- 1 straight tracks
 - 2 parameters (a, b)

Estimation of track parameters

- Assuming track model is straight
 - Need FITTING PROCEDURE least square
 - Need covariance matrix of measurements (here diagonal)
- Uncertainties from error propagation
 - Detail depends on geometry
 - Both estimation & uncertainties improve

$$a = \frac{S_1 S_{xz}}{S_1 S_{z^2}} \frac{S_x S_z}{(S_z)^2}, \quad b = \frac{S_x S_{z^2}}{S_1 S_{z^2}} \frac{S_z S_{xz}}{(S_z)^2}$$

$$\sigma_a^2 = \frac{S_1}{S_1 S_{z^2}} \frac{S_z}{(S_z)^2}, \quad \sigma_b^2 = \frac{S_z^2}{S_1 S_{z^2}} \frac{S_z S_{xz}}{(S_z)^2}$$

$$\text{COV}_{a,b} = \frac{S_z}{S_1 S_{z^2}} \frac{S_z S_{xz}}{(S_z)^2}$$

See LSM on straight tracks later
What are we talking about?

Hypothesis:

- More than two sensors
 - Positions with uncertainty σ_{det}
 - With some THICKNESS \rightarrow physics effect
- 1 straight tracks
 - 2 parameters (a, b)

Estimation of track parameters

- Assuming track model is straight
 - Need fitting procedure least square
 - Need covariance matrix of measurements \rightarrow NON DIAGONAL terms
- Uncertainties from error propagation
 - same estimators but increased uncertainties

What are we talking about?

\[
a = \frac{S_1 S_{xz}}{S_1 S_{z^2}} \frac{S_x S_z}{(S_z)^2}, \quad b = \frac{S_x S_{z^2}}{S_1 S_{z^2}} \frac{S_z S_{xz}}{(S_z)^2}
\]

Complex covariant matrix expression

- correlation between sensors
- Various implementations possible
What are we talking about?

Hypothesis:
- More than two sensors
 - Positions with uncertainty σ_{det}
 - With some thickness
- MANY straight tracks
 - Still 2 parameters (a,b)...per track!
 - But may change along track path

New step = FINDING
- Which hits to which tracks ?
 - Strongly depends on geometry

Estimation of track parameters
- Happens after finder
- Uncertainties involve correlation
Lecture outline

1. Basic concepts
2. Position sensitive detectors
3. Standard algorithms
4. Advanced algorithms
5. Optimizing a tracking system
6. References
1. Motivations & basic concepts

- Motivations
- Types of measurements
- The 2 main tasks
- Environmental considerations
- Figures of merit
1. Motivations & Basic Concepts

- Understanding an event
 - Individualize tracks \(\approx \) particles
 - Measure their properties
 - LHC: \(\sim 1000 \) particles per 25 ns “event”

- Track properties
 - **Momentum** \(\Leftrightarrow \) curvature in B field
 - Reconstruct invariant masses
 - Contribute to jet energy estimation
 - **Energy** \(\Leftrightarrow \) range measurement
 - Limited to low penetrating particle
 - **Mass** \(\Leftrightarrow \) dE/dx measurement
 - **Origin** \(\Leftrightarrow \) vertexing (connecting track)
 - Identify decays
 - Measure flight distance
 - **Extension** \(\Leftrightarrow \) particle flow algorithm (pfa)
 - Association with calorimetric shower
1. Motivations & Basic Concepts

Magnetic field curves trajectories
\[\frac{d\vec{p}}{dt} = q \vec{v} \cdot \vec{B} \]
- Rewritten with position \((x)\) and path length \((l)\) → basic equation:
- In \(B=4T\) a 10 GeV/c particle will get a sagitta of 1.5 cm @ 1m

Fixed-target experiments
- Dipole magnet on a restricted path segment
- Measurement of deflection (angle variation)

Collider experiment
- Barrel-type with axial \(B\) over the whole path
- Measurement of curvature (sagitta)
\[\frac{p_T}{q} = \frac{0.3 \cdot B(T)L}{\Delta \alpha} \]

Other arrangements
- Toroidal \(B\)... not covered

Two consequences
- Position sensitive detectors needed
- Perturbation effects on trajectories limit precision on track parameters
1. Motivations & Basic Concepts

Identifying through topology

- Short-lived weakly decaying particles
 - Charm $c\tau \sim 120$ μm
 - Beauty $c\tau \sim 470$ μm
 - tau, strange/charmed/beauty particle

Exclusive reconstruction

- Decay topology with secondary vertex
- Exclusive = all particles associated

Inclusive “kink” reconstruction

- Some particles are invisible (ν)
1. Motivations & Basic Concepts

- **Inclusive reconstruction**
 - Selecting parts of the daughter particles = flavor tagging
 - based on impact parameter (IP)
 - $\sigma_{IP} \sim 20\text{-}100 \, \mu m$ requested

- **Definition of impact parameter (IP)**
 - Also DCA = distance of closest approach from the trajectory to the primary vertex
 - Full 3D or 2D (transverse plane d_{ρ}) +1D (beam axis)
 - Sign extremely useful for flavor-tagging

Sign defined by charge + traj. Position /VP

Sign defined by angle dca / jet momentum
Finding the event origin

- Where did the collision did occur?
 - Primary vertex
- (life)Time dependent measurements
 - CP-asymmetries @ B factories ($\Delta z \approx 60-120 \mu m$)
- Case of multiple collisions / event
 - $\gg 10$ vertex @ LHC

Remarks for collider

- Usually no measurement below 1-2 cm / primary vertex
 - Due to beam-pipe maintaining vacuum
- Requires extrapolation \Rightarrow expect “unreducible” uncertainties
1. Motivations & Basic Concepts

- **Usually not a tracker task**
 - CALORIMETERs (see lecture by Isabelle)
 - Indeed calorimeters gather material to stop particles while trackers try to avoid material (multiple scattering)
 - however...calorimetry tries to improve granularity

- **Particle flow algorithm**
 - Colliders (pp and ee)

- **Energy evaluation by counting particles**
 - Clearly heretic for calorimetry experts
 - Requires to separate E_{deposit} in dense environment

- **Range measurement for low energy particles**
 - Stack of tracking layers
 - Modern version of nuclear emulsion

NOT COVERED
1. Motivations & Basic Concepts

- Reminder on the physics (see other courses)
 - Coulomb scattering mostly on nuclei
 - Molière theory description as a centered gaussian process
 - the thinner the material, the less true → large tails

- In-plane description (defined by vectors \(p_{\text{in}}, p_{\text{out}} \))
 - Corresponds to \((\phi, \theta)\) with \(p_{\text{in}} = p_z \) and
 \[
 p_{\text{out}}^2 = p_{\text{out},z}^2 + p_{\text{out},T}^2 \Rightarrow \begin{cases}
 p_{\text{out}} \cos \theta = p_{\text{out},z} \\
 p_{\text{out},T} = p_{\text{out}} \sin \theta = p_{\text{out}} \theta
 \end{cases}
 \]
 (note: \([0,2]\) uniform)

\[
q = 13.6 \text{ (MeV/c)} \times \frac{1}{p} \times z \times \sqrt{\frac{\text{thickness}}{X_0}} \left[1 + 0.038 \ln \left(\frac{\text{thickness}}{X_0} \right) \right]
\]

\(X_0 = \text{radiation length} \)

Same definition as in calorimetry
... though this is accidental
1. Motivations & Basic Concepts

In-space description (defined by fixed x/y axes)

→ Corresponds to \((\theta_x, \theta_y)\) with

\[
\begin{aligned}
p_{\text{out, } T}^2 &= p_{\text{out, } x}^2 + p_{\text{out, } y}^2 \\
p_{\text{out}} \sin \theta_x &\approx p_{\text{out}} \theta_x \\
p_{\text{out}} \sin \theta_y &\approx p_{\text{out}} \theta_y
\end{aligned}
\]

\[\theta_x \text{ and } \theta_y \text{ are independent gaussian processes}\]

\[x = y = \frac{\sqrt{2}}{2}\]

\[
\begin{aligned}
q^2 &= q_x^2 + q_y^2 \\
\sqrt{q^2} &= \sqrt{q_x^2} + \sqrt{q_y^2} \text{ and } \sqrt{q_x} = \sqrt{q_y} = \sqrt{q}
\end{aligned}
\]

\[\theta \in [p_{\text{out, } T}, p_{\text{out}}] \text{ plane}
\]

\[\phi \in [p_{\text{out, } x}, p_{\text{out, } T}] \text{ plane}
\]

\[\theta_x \in [p_{\text{out}}, p_{\text{out, } x}] \text{ plane}
\]

\[\theta_y \in [p_{\text{out}}, p_{\text{out, } y}] \text{ plane}
\]
Important remark when combining materials

- Total thickness $T = \sum T_i$, each material (i) with $X_0(i)$

- Definition of effective radiation length \rightarrow

- Consider single gaussian process

and never do variance addition (which minimize deviation)
1. Motivations & Basic Concepts

Impact on tracking algorithm
- The track parameters evolves along the track!
- May drive choice of reconstruction method

Photon conversion
- Alternative definition of radiation length
 probability for a high-energy photon to generate a pair over a path \(dx \):
 \[
 \gamma \rightarrow e^+e^- = \text{conversion vertex}
 \]
- Generate troubles:
 - Additional unwanted tracks
 - Decrease statistics for electromagnetic calorimeter

Remember this simple case

\[
\text{Prob} = \frac{dx}{9} \frac{7}{X_0}
\]

CMS “picture” of material budget through photon conversion vertices (silicon tracker only)
1. Motivations & Basic Concepts

The collider paradigm

- Basic inputs from detectors
 - Succession of 2D or 3D points (or track segments)
 ➔ Who’s who?

- 2 steps process
 - Step 1: track identification = finding = pattern recognition
 • Associating a set of points to a track
 - Step 2: track fitting
 • Estimating trajectory parameters ➔ momentum

- Both steps require
 - Track model (signal, background)
 - Knowledge of measurement uncertainties
 - Knowledge of materials traversed (Eloss, mult. scattering)

- Vertexing needs same 2 steps
 - Identifying tracks belonging to same vertex
 - Estimating vertex properties (position + 4-vector)
Telescope mode
- Single particle at a time
 - Sole nuisance = noise
- Trigger from beam
 - Often synchronous
- Goal = get the incoming direction

The astroparticle way
- Similar to telescope mode
- No synchronous timing
- Ex: deep-water ν telescopes

=> For 2 last cases: mostly a fitting problem
- Usually with straight track model
Life in a real experiment is tough (for detectors of course)

- Chasing small cross-sections ➔ large luminosity and/or energy
- Short interval between beam crossing
 - LHC: 25 ns (and >10 collisions / crossing)
 - CLIC: 5 ns (but not continuous)
- Large amount of particles (could be > 10^7 part/cm2/s) ➔ background, radiation
 - makes the finding more complicated
- Vacuum could be required (space, very low momentum particles (CBM, LHCb))

Radiation tolerance

- Two types of energy loss
 - Ionizing (generate charges): dose in Gy = 100 Rad
 - Non-ionizing (generate defects in solid): fluence in $n_{eq}(1MeV)/cm^2$
- The more inner the detection layer, the harder the radiation (radius2 effect)
- Examples for most inner layers:
 - LHC: 10^{15} to $<10^{17}$ $n_{eq}(1MeV)/cm^2$ with 50 to 1 MGy
 - ILC: $<10^{12}$ $n_{eq}(1MeV)/cm^2$ with 5 kGy
1. Motivations & Basic Concepts:

Environmental conditions – 2/2

○ Timing consideration
 - Integration time drives occupancy level (important for finding algorithm)
 - Time resolution offers time-stamping of tracks
 - Tracks in one “acquisition event” could be associated to their proper collision event if several have piled-up
 - Key question = triggered or not-triggered experiment?

○ Heat concerns
 - Spatial resolution → segmentation → many channels
 - Readout speed → power dissipation/channel
 - Efficient cooling techniques exist BUT add material budget and may not work everywhere (space)

○ Summary
 - Tracker technology driven by environmental conditions: hadron colliders (LHC)
 - Tracker technology driven by physics performances: lepton colliders (B factories, ILC), heavy-ion colliders (RHIC, LHC)
 - Of course, some intermediate cases: superB factories, CLIC
1. Motivations & Basic Concepts:

- For detection layer
 - Detection efficiency
 - Mostly driven by Signal/Noise
 - **Note:** Noise = signal fluctuation \oplus readout (electronic) noise
 - Intrinsic spatial resolution
 - Driven by segmentation (not only)
 - Useful tracking domain $\sigma < 1\text{mm}$
 - Linearity and resolution on dE/dx
 - Material budget
 - “Speed” (integration time, time resolution, ...)

- For detection systems (multi-layers)
 - Track finding & purity
 - Two-track resolution
 - Ability to distinguish two nearby trajectories
 - Mostly governed by signal spread / segments
 - Momentum resolution $\frac{\langle p \rangle}{p}$
 - Impact parameter resolution
 - Sometimes called “distance of closest approach” to a vertex

Figures of Merit
2. Detection technologies

- Intrinsic resolution
- Single layer systems
 - Silicon, gas sensors, scintillator
- Multi-layer systems
 - Drift chamber and TPC
- Tentative simplistic comparison
- Magnets
- Practical considerations
- Leftovers
1. Motivations & Basic Concepts:

- Position measurement comes from segmentation
 - Pitch

- Digital resolution
 \[\text{pitch} = \frac{\text{pitch}}{\sqrt{12}} \]

- Improvement from signal sharing
 - Position = charge center of gravity
 - Effects generated by
 - Secondary charges spread inside volume
 - Inclined tracks (however, resol. limited at large angles)
 - Potential optimization of segmentation / sharing
 - Work like signal sampling theory (Fourier transform)

- Warnings:
 - Lorentz force from B mimic the effect
 - counterproductive / 2-track resolution
2. Detector Technologies:

- **Basic sensitive element**
 - E-h pairs are generated by ionization in silicon
 - 3.6 eV needed
 - 300 µm thick Si generates ~22000 charges for MIP
 BUT beware of Landau fluctuation
 - Collection: P-N junction = diode
 - Full depletion (10 to 0.5 kV)
 generates a drift field (10⁴ V/cm)
 - Collect time ~ 15 ps/µm

- **Silicon strip detectors**
 - sensor “easily” manufactured with pitch down to ~25 µm
 - 1D if single sided
 - Pseudo-2D if double-sided
 - Stereo-angle useful against ambiguities
 - Difficult to go below 100 µm thickness
 - Speed and radiation hardness: LHC-grade
2. Detector Technologies:

Concept
- Strips \rightarrow pixels on sensor
- One to one connection from electronic channels to pixels

Performances
- Real 2D detector & keep performances of strips
 - Can cope with LHC rate (speed & radiation)
- Pitch size limited by physical connection and #transistors for treatment
 - minimal (today): 50x50 μm2
 - typical: 100x150/400 μm2
 - spatial resolution about 10 μm
- Material budget
 - Minimal (today): 100(sensor)+100(elec.) μm
- Power budget: 10 μW/pixel
2. Detector Technologies:

CMOS Pixel Sensor (CPS)

Concept
- Use industrial CMOS process
 - Implement an array of sensing diode
 - Amplify the signal with transistors near the diode
- Benefit to
 - granularity: pixel pitch down to \(\sim 10 \, \mu m \)
 - material: sensitive layer thickness as low as 10-20 \(\mu m \)
- Known as Monolithic Active Pixel Sensors (MAPS)

Sensitive layer
- If undepleted & thin (10-20 \(\mu m \))
 - Slow (100 ns) thermal drift of charges
 - non-ionizing rad. tolerance \(\lesssim 10^{13} \, n_{eq(1MeV)}/cm^2 \)
- If fully depleted (from 10 to 100 \(\mu m \))
 - Fast (few ns) field-driven drift of charges
 - non-ionizing rad. tolerance \(> 10^{15} \, n_{eq(1MeV)}/cm^2 \)
2. Detector Technologies:

Concept
- Use industrial CMOS process
 - Implement an array of sensing diode
 - Amplify the signal with transistors near the diode
- Gain in granularity: pitch down to $\sim 10 \, \mu m$
- Gain in sensitive layer thickness $\sim 10-20 \, \mu m$
- For undepleted thin sensitive layer
 - Slow (100 ns) thermal drift of charges
 - non-ionizing rad. tolerance $\lesssim 10^{13} \, n_{eq}(1 \, \text{MeV})/\text{cm}^2$
- For fully depleted thin to thick sensitive layer
 - Fast (few ns) field-driven drift of charges
 - non-ionizing rad. tolerance $> 10^{15} \, n_{eq}(1 \, \text{MeV})/\text{cm}^2$

Performances
- Spatial resolution 1-10 μm (in 2 dimensions)
- Material budget: $\lesssim 50 \, \mu m$
- Power budget: $< \mu W$/pixel
- Integration time $\approx 5-100 \, \mu s$ demonstrated
 - $\sim 1 \, \mu s$ in development
- Timestamping @ ns level in development
2. Detector Technologies:

- **DEPFET**
 - Depleted p-channel FET
 - Fully depleted sensitive layer
 - Large amplification
 - Still require some read-out circuits
 - Not fully monolithic
 - Possibly limited in read-out speed

- **Silicon On Insulator (SOI)**
 - Fully depleted sensitive layer
 - Fully monolithic
 - Electronics similar to MAPS
2. Detector Technologies:

Basic sensitive element
- Metallic wire, $1/r$ effect generated an avalanche
- Signal depends on gain (proportional mode)
 typically 10^4
- Signal is fast, a few ns

Gas proportional counters
- Multi-Wire Proportional Chamber
 - Array of wires
 - 1 or 2D positioning depending on readout
 - Wire spacing (pitch) limited to 1-2 mm
- Straw or drift tube
 - One wire in One tube
 - Extremely fast (compared to Drift Chamber)
 - Handle high rate
 - Spatial resolution <200 µm
 - Left/right ambiguity

Electric fields line around anode wires
2. Detector Technologies:

Micro-pattern gas multipliers

- MSGC
 - Replace wires with lithography micro-structures
 - Smaller anodes pitch 100-200 µm
 - BUT Ageing difficulties due to high voltage and manufacturing not so easy

- GEM
 - Gain 10^5
 - Hit rate 10^6 Hz/cm²
2. Detector Technologies:

Micro-pattern gas multipliers

- MSGC
 - Replace wires with lithography micro-structures
 - Smaller anodes pitch 100-200 µm
 - BUT Ageing difficulties due to high voltage and manufacturing not so easy

- GEM
 - Gain 10^5
 - Hit rate 10^6 Hz/cm²

- MICROMEGAS
 - Even smaller distance anode-grid
 - Hit rate 10^9 Hz/cm²

- More development
 - Electron emitting foil working in vacuum!
2. Detector Technologies:

- **Basic principle**
 - Mix field and anode wires
 - Generate a drift
 - Pressurize gas to increase charge velocity (few atm)
 - 3D detector
 - 2D from wire position
 - 1D from charge sharing at both ends

- **Spatial Resolution**
 - Related to drift path
 \[\mu \sqrt{\text{drift length}} \]
 - Typically 100-200 µm

- **Remarks**
 - Could not go to very small radius
2. Detector Technologies:

Benefits
- Large volume available
- Multi-task: tracking + Part. Identification

Basic operation principle
- Gas ionization \rightarrow charges
- Electric field \rightarrow charge drift along straight path
- Information collected
 - 2D position of charges at end-cap
 - 3rd dimension from drift time
 - Energy deposited from #charges
- Different shapes:
 - rectangles (ICARUS)
 - Cylinders (colliders)
 - Volumes can be small or very large
2. Detector Technologies:

End cap readout
- Gas proportional counters
 - Wires+pads, GEM, Micromegas

Performances
- Two-track resolution ~ 1cm
- Transverse spatial resolution $\sim 100 - 200 \mu$m
- Longitudinal spatial resolution $\sim 0.2 - 1$ mm
- Longitudinal drift velocity: 5 to 7 cm/µs
 - ALICE TPC (5m long): 92 µs drift time

Pro
- Nice continuously spaced points along trajectory
- Minimal multiple scattering (inside the vessel)

Cons
- Limiting usage with respect to collision rate
Conclusion on technologies

Tentative Comparison

- Faster collision rates and higher particle multiplicities favour:
 - Fast silicon sensors and micro-pattern gas chambers
 - Pixelisation
 - Still large gas ensemble for
 - BelleII (SuperKEKB) -> CDC and ILD (ILC) -> TPC

Trend
2. Detector Technologies:

Solenoid
- Field depends on current I, length L, # turns N
 - on the axis \[B = \frac{\mu_0 NI}{\sqrt{L^2 + 4R^2}} \]
 - Typically: 1 T needs 4 to 8 kA
 ➔ superconducting metal to limit heat
- Field uniformity needs flux return (iron structure)
 - Mapping is required for fitting (remember \(B(x) \)?)
 - Usually performed with numerical integration
- Calorimetry outside ➔ limited material ➔ superconducting
- Fringe field calls for compensation

Supercondiction
- cryo-operation ➔ quenching possible!
- Magnetic field induces energy: \(E \mu B^2 R^2 L \)
 - Cold mass necessary to dissipate heat in case of quench

<table>
<thead>
<tr>
<th></th>
<th>Field (T)</th>
<th>Radius (m)</th>
<th>Length (m)</th>
<th>Energy (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE</td>
<td>0.5</td>
<td>6</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>ATLAS</td>
<td>2</td>
<td>2.5</td>
<td>5.3</td>
<td>700</td>
</tr>
<tr>
<td>CMS</td>
<td>4</td>
<td>5.9</td>
<td>12.5</td>
<td>2700</td>
</tr>
<tr>
<td>ILC</td>
<td>4</td>
<td>3.5</td>
<td>7.5</td>
<td>2000</td>
</tr>
</tbody>
</table>
From a detection principle to a detector

- Build large size or many elements
 - Manufacture infrastructures
 - Characterization capabilities
 - Production monitoring
 - New monolithic silicon pixel detector tend to replace silicon strip technology

- Integration in the experiment
 - Mechanical support
 - Electrical services (powering & data transmission)
 - Cooling (signal treatment dissipates power)

- Specific to trackers
 - Internal parts of multi-detectors experiment → limited space
 - Material budget is ALWAYS a concern
 - ⇒ trade-offs required
2. Detector Technologies:

- **Silicon drift detectors**
 - Real 2D detectors made of strips
 - 1D is given by drift time

- **Diamond detectors**
 - Could replace silicon for hybrid pixel detectors
 - Very interesting for radiation tolerance

- **Plasma sensor panels**
 - Derived from flat television screen
 - Still in development

- **Charge Coupled Devices (CCD)**
 - Fragile/ radiation tolerance

- **Signal generation**
 - see Ramo’s theorem

- **Nuclear emulsions**
 - One of the most precise ~ 1µm
 - No timing information → very specific applications

- **Scintillators**
 - Extremely fast (100 ps)
 - Could be arranged like straw tubes
 - But quite thick ($X_0 \sim 2$ cm)
3. Standard algorithms

- Finders
- First evaluation of momentum resolution
- Fitters
- Alignment
3. Standard algorithms:

Global methods
- Transform the coordinate space into *pattern space*
 - “pattern” = parameters used in track model
- Identify the “best” solutions in the new phase space
- Use all points at a time
 - No history effect
- Well adapted to evenly distributed points with same accuracy

Local methods
- Start with a track seed = restricted set of points
 - Could require good accuracy from the beginning
- Then extrapolate to next layer-point
 - And so on... *iterative procedure*
- “Wrong” solutions discarded at each iteration
- Possibly sensitive to “starting point”
- Well adapted to redundant information
A simple example
- Straight line in 2D: model is \(x = a*z + b \)
- Track parameters \((a, b)\); N measurements \(x_i\) at \(z_i\) \((i=1..N)\)

A more complex example
- Helix in 3D with magnetic field
- Track parameters \((\gamma_0, z_0, D, \tan\lambda, \text{C}=\text{R})\)
- Measurements \((r, \varphi, z)\)

Generalization
- Parameters: \(P\)-vector \(p\)
- Measurements: \(N\)-vector \(c\)
- Model: function \(f(\mathcal{R}^P \rightarrow \mathcal{R}^N)\)

\[
\begin{align*}
\varphi(r) &= \gamma_0 + \sin \left(\frac{Cr (1 + CD)D/r}{1 + 2CD} \right) \\
z(r) &= z_0 + \frac{\tan\lambda}{C} \sin \left(C \sqrt{\frac{r^2 - D^2}{1 + 2CD}} \right)
\end{align*}
\]
Another view of the helix

- $s =$ track length
- $h =$ sense of rotation
- $\lambda =$ dip angle
- Pivot point ($s=0$):
 - position (x_0, y_0, z_0)
 - orientation ϕ_0

\[
x(s) = x_0 + R \left[\cos \left(\Phi_0 + \frac{hs \cos \lambda}{R} \right) - \cos \Phi_0 \right]
\]
\[
y(s) = y_0 + R \left[\sin \left(\Phi_0 + \frac{hs \cos \lambda}{R} \right) - \sin \Phi_0 \right]
\]
\[
z(s) = z_0 + s \sin \lambda
\]
3. Standard algorithms:

- **Track seed = initial segment**
 - Made of few (2 to 4) points
 - One point could be the expected primary vtx
 - Allows to initialize parameter for track model
 - Choose *most precise* layers first
 - usually inner layers
 - But if high hit density
 - Start farther from primary interaction @ *lowest density*
 - Limit mixing points from different tracks

- **Extrapolation step**
 - Out or inward (=toward primary vtx) onto the next layer
 - Not necessarily very precise, especially *only local model* needed
 - Extrapolation uncertainty \(\leq \) layer point uncertainty
 - Computation speed important
 - Match (associate) nearest point on the new layer
 - Might skip the layer if point missing
 - Might reject a point: if worst track-fit or if fits better with another track
3. Standard algorithms:

- **Variant with track segments**
 - First build “tracklets” on natural segments
 - Sub-d Detectors, or subparts with same resolution
 - Then match segments together
 - Typical application:
 - Segments large tracker (TPC) with vertex detector (Si)
 - layers dedicated to matching

- **Variant with track roads**
 - Full track model used from start

- **Variant with Kalman filter**
 - See later

- **Figure of merit**
 - $\sigma_{\text{eff}} = \sigma(\text{sensor}) \oplus \sigma(\text{track extrapolation}) = \text{effective spatial resolution}$
 - $\rho = \text{background hit density}$
3. Standard algorithms:

- **Brute force = combinatorial way**
 - Consider all possible combination of points to make a track
 - Keep only those compatible with model
 - Usually too time consuming...

- **Hough transform**
 - Example straight track:
 - Coord. space $y = a^*x + b \iff$ pattern space $b = y - x^*a$
 - Each point (y,x) defines a line in pattern space
 - All lines, from points belonging to same straight-track, cross at same point (a,b)
 - In practice:
 discretize pattern space and search for maximum
 - Applicable to circle finder
 - needs two parameters as well (r, φ of center)
 if track is assumed to originate from $(0,0)$
 - More difficult for more than 2 parameters...
3. Standard algorithms:

Conformal mapping

- Helix transverse projection = Circle
 - \((x-a)^2 + (y-b)^2 = r^2\)
 - Transform to \(u = x/(x^2+y^2), \ v = y/(x^2+y^2)\)
 - Then: \(v = -(a/b) \ u + (1/2b)\)

Figure of merit

\[(sensor)_z (sensor)_{bckgrnd}\]
3. Standard algorithms:

Why do we need to fit?

- Measurement error
- Multiple scattering error

Global fit

- Assume knowledge of:
 - all track points
 - full correlation matrix
 - difficult if $\sigma_{\text{mult. scatt.}} \gtrapprox \sigma_{\text{meas.}}$
- Least square method

Iterative fit

- Iterative process:
 - points included in the fit one by one
 - could be merged with finder step
- Kalman filter

FITTING drives track extrapolation & momentum res.
Linear model hypothesis
- \(p \) track parameters, with \(N \) measurements \(c \)

\[
\tilde{c} = \tilde{c}_s + A(\tilde{p} - \tilde{p}_s) + \tilde{e}
\]

- \(p_s \) = known starting point (pivot), \(A \) = track model \(N \times P \) matrix, \(\varepsilon \) = error vector corresponding to \(V \) = covariance \(N \times N \) matrix

Sum of squares:
\[
\frac{\text{(model - measure)}^2}{\text{uncertainty}^2} = S(\tilde{p}) = (\tilde{c}_s + A(\tilde{p} - \tilde{p}_s) - \tilde{c})^T V^{-1} (\tilde{c}_s + A(\tilde{p} - \tilde{p}_s) - \tilde{c})
\]

Best estimator (minimizing variance)
\[
\frac{dS}{dp}(\tilde{p}) = 0 \quad \Rightarrow \quad \tilde{p} = \tilde{p}_s + (A^T V^{-1} A)^{-1} A^T V^{-1} (\tilde{c} - \tilde{c}_s)
\]

- Variance (= uncertainty) of the estimator:

\[
V_{\tilde{p}} = (A^T V^{-1} A)^{-1}
\]

- Estimator \(\tilde{p} \) follows a \(\chi^2 \) law with \(N - P \) degrees of freedom

Problem \(\Leftrightarrow \) inversion of a \(P \times P \) matrix \((A^T V^{-1} A) \)
- But real difficulty could be computing \(V \) (\(N \times N \) matrix)

\(\Leftrightarrow \) layer correlations if multiple scattering non-negligible if \(\sigma_{\text{mult. scatt.}} \geq \sigma_{\text{meas}} \)
3. Standard algorithms:

- **Straight line model**
 - 2D case \(\rightarrow \) D=2 coordinates \((z,x)\)
 - 2 parameters: \(a = \text{slope}, \ b = \text{intercept at } z=0 \)

- **General case**
 - \(K+1 \) detection planes \((i=0\ldots k)\)
 - located at \(z_i \)
 - Spatial resolution \(\sigma_i \)
 - Useful definitions
 - \(S_1 = \sum_{i=0}^{K} \frac{1}{2}, \ S_z = \sum_{i=0}^{K} \frac{z_i}{2}, \ S_{xz} = \sum_{i=0}^{K} \frac{x_i z_i}{2}, \ S_z^2 = \sum_{i=0}^{K} \frac{z_i^2}{2} \)
 - Solutions
 - \(a = \frac{S_1 S_{xz}}{S_1 S_z^2 (S_z^2)^2}, \ b = \frac{S_z S_{xz}}{S_1 S_z^2 (S_z^2)^2} \)
 - Uncertainties
 - \(a^2 = \frac{S_1^2}{S_1 S_z^2 (S_z^2)^2}, \ b^2 = \frac{S_z^2}{S_1 S_z^2 (S_z^2)^2} \)
 - \(\text{correlation } \text{cov}_{a,b} = \frac{S_z}{S_1 S_z^2 (S_z^2)^2} \)

- **Case of uniformly distributed \((K+1)\) planes**
 - \(z_{i+1} - z_i = L/K \) et \(\sigma_i = \sigma \) \(\forall i \)
 - \(S_z = 0 \) \(\rightarrow \) \(a, b \) uncorrelated
 - \(a^2 = \frac{12K}{(K+2)L^2} K^2, \ b^2 = \left(1+12 \frac{K}{K+2} \frac{z_c^2}{L^2}\right)^2 \frac{1}{K+1} \)
 - Uncertainties:
 - \(\sigma_a \) and \(\sigma_b \) improve with \(1/\sqrt{K+1} \)
 - \(\sigma_a \) and \(\sigma_b \) improve with \(1/L \)
 - \(\sigma_b \) improve with \(z_c \)
3. Standard algorithms:

Hypothesis
- K detectors, each with σ single point accuracy
- Uniform field over L from dipole
 - Trajectory: $\Delta \alpha = \frac{0.3qBL}{p}$
 - Bending: $\Delta p = p \Delta \alpha$
- Geometrical arrangement optimized for resolution
 - Angular determination on input and output angle: $\left(\frac{2}{K} \frac{l^2}{16}\right)^2$

Without multiple scattering
- Uncertainty on momentum
 $$\frac{p}{p} = \frac{8}{1} \frac{1}{0.3q BL l \sqrt{K}} p$$
- Note proportionality to p!

Multiple scattering contribution
- Additional term on σ_α almost directly from smult.scatt
 $$\frac{13.6 \text{ (MeV/c)}}{p} z$$
3. Standard algorithms:

- Hypothesis
 - K detectors uniformly distributed each with σ single point accuracy
 - Uniform field over path length L

- Without multiple scattering
 - Uncertainty on transverse momentum (Glückstern formula)

$$\frac{p_T}{p_T} = \frac{\sqrt{720}}{0.3q} \frac{1}{BL^2} \frac{1}{\sqrt{K + 6}} p_T$$

- Works well with large $K > 20$
3. Standard algorithms:

Dimensions
- P parameters for track model
- D “coordinates” measured at each point (usually D<P)
- K measurement points (# total measures: N = KxD)

Starting point
- Initial set of parameters: first measurements
- With large uncertainties if unknowns

Iterative method
- Propagate to next layer = prediction
 - Using the system equation \(\vec{p}_k = G \vec{p}_{k-1} + \tilde{\omega}_k \)
 - \(G = P \times P \) matrix, \(\tilde{\omega} = \) perturbation associated with covariance \(P \times P \) matrix \(V_\omega \)
 - Update the covariance matrix with additional uncertainties (ex: material budget between layers)
 \(V_{k|k-1} = V_{k-1} + V_k \)
- Add new point to update parameters and covariance, using the measure equation \(\vec{m}_k = H \vec{p}_k + \tilde{\epsilon}_k \)
 - \(H = D \times P \) matrix, \(\tilde{\epsilon} = \) measure error associated with diagonal covariance \(D \times D \) matrix \(V_m \)
 - Weighted means of prediction and measurement using variance \(\Leftrightarrow \chi^2 \) fit
- Iterate...

\[
\vec{p}_k = \left(V_{k|k-1}^{-1} \vec{p}_{k|k-1} + H^T V_m^{-1} \vec{m}_k \right) \cdot \left(V_{k|k-1}^{-1} + H^T V_m^{-1} H \right)^{-1}
\]
3. Standard algorithms:

- Forward and backward filters
 - Forward estimate of p_k: from $1 \rightarrow k-1$ measurements
 - Backward estimate of p_k: from $k+1 \rightarrow K$ measurements
 - Independent estimates \rightarrow combination with weighted mean = smoother step

- Computation complexity
 - only $P \times P$, $D \times P$ or $D \times D$ matrices computation ($\ll N \times N$)

- Mixing with finder
 - After propagation step: local finder
 - Some points can be discarded if considered as outliers in the fit (use χ^2 value)

- Include exogenous measurements
 - Like dE/dx, correlated to momentum
 - Additional measurement equation $\bar{m'}_k = H' \bar{p}_k + \bar{e'}_k$

$$\bar{p}_k = \left(V^{-1}_{klk-1} \bar{p}_{klk-1} + H^T V^{-1}_{m_k} \bar{m}_k + H'^T V^{-1}_{m'_k} \bar{m'}_k \right) \cdot \left(V^{-1}_{klk-1} + H^T V^{-1}_{m_k} H + H'^T V^{-1}_{m'_k} H'\right)^{-1}$$
Let’s come back to one initial & implicit hypothesis

- “We know were the point are located.”
- True to the extent we know were the detector is!
- BUT, mechanical instability (magnetic field, temperature, air flow...) and also drift speed variation (temperature, pressure, field inhomogeneity...) limit our knowledge
- Periodic determination of positions and deformations needed = alignment

Note hit position relative to detector are the same tracks reconstructed are not even close to reality...
3. Standard algorithms:

Alignment parameters
- Track model depends on additional “free” parameters, i.e. the sensor positions

Methods
- Global alignment:
 - Fit the new params. to minimize the overall χ^2 of a set of tracks (Millepede algo.)
 - Beware: many parameters could be involved (few 10^3 can easily be reached)

- Local alignment:
 - Use tracks reconstructed with reference detectors
 - Align other detectors by minimizing the “residual” (track-hit distance) width

For both cases
- Use a set of well know tracks and tracking-”friendly” environment to avoid bias
 - Muons (very traversing) and no magnetic field
 - Low multiplicity events
4. Advanced methods
(brief illustrations)

- Why?
- Neural network
- Cellular automaton
4. Advanced methods

Shall we do better?
- Higher track/vertex density, less efficient the classical method
- Allows for many options and best choice

Adaptive features
- **Dynamic change** of track parameters during finding/fitting
- Measurements are weighted according to their uncertainty
 - Allows to take into account several “normally excluded” info
- Many hypothesis are handled simultaneously
 - But their number decrease with iterations (annealing like behavior)
- Non-linearity
- Often CPU-time costly (is that still a problem?)

Examples
- Neural network, Elastic nets, Gaussian-sum filters, Deterministic annealing, Cellular automaton
Cellular automaton

- Initialization
 - built any cell (= segment of 2 points)
- Iterative step
 - associate neighbour cells (more inner)
 - Raise “state” with associated cells
 - Kill lowest state cells

J. Lettenbichler et al., 2013

0 (black), 1 (red), 2 (orange), 3 (green), 4 (cyan)
5. Deconstructing some tracking systems

- CMS (colliders)
- AMS, ANTARES (telescopes)
5. Some tracking systems:

- **Superconducting Coil**, 4 Tesla
- **Calorimeters**
 - ECAL 76k scintillating PbWO4 crystals
 - HCAL Plastic scintillator/brass sandwich
- **Tracker**
 - Pixels
 - Silicon Microstrips
 - 210 m² of silicon sensors
 - 9.6 M channels
- **Muon Barrel**
 - Drift Tube Chambers (DT)
 - Resistive Plate Chambers (RPC)
- **Muon Endcaps**
 - Cathode Strip Chambers (CSC)
 - Resistive Plate Chambers (RPC)

Dimensions
- Total weight: 12500 t
- Overall diameter: 15 m
- Overall length: 21.6 m

2900 scientists from 182 institutes from 38 countries
5. Some tracking systems:

- The trackers
5. Some tracking systems:

- Alignment residual width
5. Some tracking systems:

- Taking a picture of the material budget
 - Using secondary vertices from $\gamma \rightarrow e^+e^-$

- Measuring it by data/simulation comparison
5. Some tracking systems:

- Tracking algorithm = multi-iteration process
5. Some tracking systems:

- Tracking efficiency

![Graph showing tracking efficiency]
5. Some tracking systems:

- Tracking efficiency
 - Single, isolated muons
5. Some tracking systems:

- Tracking efficiency
 - All pions

- Graph showing CMS simulation efficiency vs. η (left) and p_T (right) for different pion momenta and regions.
5. Some tracking systems:

- Tracking purity
 - All pions

![Graph showing tracking purity for different pion energies and regions.](image)
5. Some tracking systems:

- Tracking resolution

$d_0 = \text{transverse impact parameter}$
5. Some tracking systems:

- Tracking resolution

ALICE figure
5. Some tracking systems:

Impact parameter resolution

\[\sigma_{ip} \propto \sqrt{\frac{R_{ext}^2 \sigma_{int}^2 + R_{int}^2 \sigma_{ext}^2}{R_{ext} - R_{int}}} + \frac{R_{int} \sigma_{\theta(int)}}{p \sin^{3/2}(\theta)} \]
5. Some tracking systems:

AMS: A TeV precision, multipurpose particle physics spectrometer in space.

- **TRD**
 - Identify e^+, e^-

- **Silicon Tracker**
 - Z, P

- **ECAL**
 - E of e^+, e^-, γ

- **TOF**
 - Z, E

- **Magnet**
 - $\pm Z$

- **RICH**
 - Z, E

Particles and nuclei are defined by their charge (Z) and energy ($E \sim P$).

Z, P are measured independently by the Tracker, RICH, TOF and ECAL.
5. Some tracking systems:

Fig. 5. The effective position resolution (weighted average of two Gaussian widths) in the y-coordinate for different inclination angles (top), the Maximum Detectable Rigidity (MDR, 100% rigidity measurement error) as a function of the inclination angle estimated for 1 TV proton incidence with the simulation (middle), and the inclination angle distribution in the geometric acceptance of the tracker (bottom).
5. Some tracking systems:
Summary

Fundamental characteristics of any tracking & vertexing device:
- (efficiency), granularity, material budget, power dissipation, “timing”, radiation tolerance
- All those figures are intricated: each technology has its own limits

Many technologies available
- None is adapted to all projects (physics + environment choose, in principle)
- Developments are ongoing for upgrades & future experiments
 - Goal is to extent limits of each techno. → convergence to a single one?

Reconstruction algorithms
- Enormous boost (variety and performances) in the last 10 years
- Each tracking system has its optimal algorithm

Development trend
- Always higher hit rates call for more data reduction
- Tracking info in trigger → high quality online tracking/vertexing

Link with:
- PID: obvious with TPC, TRD, topological reco.
- Calorimetry: Particle flow algorithm, granular calo. using position sensors
References

- R. Frühwirth, M. Regler, R. K. Bock, H. Grote, D. Notz
 Data Analysis Techniques for High-Energy Physics

- P. Billoir
 Statistics for trajectometry,
 proceedings of SOS 2012, doi:10.1051/epjconf/20135503001

- ...and of course the Particle Data Group review

- D. Green
 The Physics of Particle Detectors
 ed. Cambridge University Press 2005
 (some sections describing tracking)
Detector technologies

- Fabio Sauli
 Gaseous Radiation Detectors: Fundamentals and Applications
 ed. Cambridge University Press 2014

- Helmut Spieler,
 Semiconductor Detector Systems,
 ed. Oxford Univ. Press 2005

- Leonardo Rossi, Peter Fischer, Tilman Rohe and Norbert Wermes
 Pixel Detectors: From Fundamentals to Applications,
 ed. Springer 2006
Reconstruction algorithm & fit

References
Contributions from experiments

- S.Amerio, Online Track Reconstruction at Hadron Collider, Proceedings of ICHEP 2010, PoS(ICHEP 2010)481

Was not discussed

- Particle interaction with matter
- The readout electronics
- Cooling systems
- The magnets to produce the mandatory magnetic field for momentum measurement
- Vertexing
Backups:

OPAL drift chamber
Backups:

ALICE - TPC

ALICE
(ALICE) TPC dE/dx
ICARUS - TPC

Backups:
NA-50 fixed target

Backups:
Backups:

ATLAS tracking setup

- Barrel semiconductor tracker
- Pixel detectors
- Barrel transition radiation tracker
- End-cap transition radiation tracker
- End-cap semiconductor tracker
Backups:

ATLAS tracking setup

[Diagram showing ATLAS tracking setup with labels for Solenoid coil, TRT(barrel), SCT(barrel), TRT(end-cap), SCT(end-cap), Pixel, ID end-plate, Cryostat, Pixel support tube, Pixel PP1, Beam-pipe, and R parameters.]
Backups:

ALICE setup

1. L3 MAGNET
2. HMPID
3. TOF
4. DIPOL MAGNET
5. MUON FILTER
6. TRACKING CHAMBERS
7. TRIGGER CHAMBERS
8. ABSORBER
9. TPC
10. PHOS
11. ITS
Backups:

CMS

Key:
- Muon
- Electron
- Charged Hadron (e.g. Pion)
- Neutral Hadron (e.g. Neutron)
- Photon

Transverse slice through CMS

Silicon Tracker

Electromagnetic Calorimeter

Hadron Calorimeter

Superconducting Solenoid

Iron return yoke interspersed with Muon chambers
More position sensitive detectors

Backups:

DEPFET

Silicon drift

CCD

MICROMEGAS
Was not discussed

- Particle interaction with matter
- The readout electronics
- Cooling systems
- The magnets to produce the mandatory magnetic field for momentum measurement
- Vertexing