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Physics of Electromagnetic 
Showers



Glossary
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Electromagnetic Showers
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An ElectroMagnetic (EM) shower is a cascade of secondary electrons/positrons and 

photons initiated by the interaction with matter (ie, energy loss) 

of an incoming of electron/positron or photon. 

 The main energy loss mechanism are:

 Compton scattering

 Pair creation

 Photo-electric effect

 Ionization

 Bremsstrahlung 
for e+/e-

for 



Ionization
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 Interaction of charged particles with electron cloud of atoms 

(loss of electrons, atoms -> ions)

 Dominant process at low energy

 Bethe-Bloch formula (general)

(MeV.g-1.cm²)

Energy loss depends:

 quadratic ally on the charge and velocity of the incident particle (but not on its mass)

 Linearly on the material (through electron density)

 Logarithmically on the material (through mean ionization I)



Bremsstrahlung
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 Radiation of real photons in the Coulomb field of the atomic nuclei

 Dominant process at high energy
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 Important for electrons, much less for muons (apart from ultra-relativistic)

(for electrons)

Radiation length



Radiation Length
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 Definition: mean distance over which the incident electron loses all BUT 1/e  37% of its 

incident energy via radiation (ie, it radiated 63% of its incident energy)

0X

E

dx

dE

rad










0X

dx

E

dE


0/

0

Xx
eEE




 Examples:

Material W Pb Cu Al Stainless Steel PbWO4 (dry) Air (liquid) Water

Z 74 82 29 13 - - - -

X0 (cm) 0,35 0,56 1,4 8,9 1,76 0,89 30390 36,08

 Useful approximation: 
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Critical Energy
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Fractional energy loss for electrons/positrons in Lead

 Radiation (ionization) dominant at high (low) energies

 Crossing point: 
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Other processes 

(Bhabha, meller, …) 

neglected in HEP 

(most of the time)

 Examples: Material W Pb (liquid) Ar Cu

Z 74 82 29 13

EC(MeV) 8,4 7,1 37 20,2

1.24Z

MeV 610
)(


solidEC

0.92Z

MeV 710
)(


liquidEC

Strongly material dependent 

(scales as 1/Z)



Photons: Pair production 
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 Can only occurs in the Coulomb field of a nucleus (or an electron) if E>2mec²

nucleuseenucleus  
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9
Xpair  Mean free path of photon before it creates a pair

 Remarks:

 pair Z(Z+1)

 Photons have a high penetrating power than electrons

 Pair creation is independent of incident energy (for E>1 GeV)

 e+e- is  emitted in photon direction



Photons: Photo-Electric effect
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 eatomatom *

 Photon extract an electron from the atom
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 Remarks:

 pe Z5, E-3.5

 Electrons are emitted (more or less) 

isotropically



Photons: Compton scattering
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 Remarks:

 Compton Z, E-1

 Electrons are emitted (more or less) isotropically



Photons: importance of the processes
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 Total cross-section vs E

Photo-electric

Compton

Pair production
 Photo-electric: dominant at very low energy

 Compton: dominant for E~100 KeV – 5 GeV

 Pair Production: dominant at higher energies 

Z=6

Z=82



Photons: Angular Distributions
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Summary for Electrons & Photons
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Electromagnetic shower: summary
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 High-energy electrons or photons interact with dense material from calorimeter: 

 The number of cascade particles is proportional to the energy deposited by the incident 

particle

 The role of the calorimeter is to count these cascade particles

 The relative occurrence of the various processes creating the cascade particles depends on Z. 

 Above 1 GeV, bremsstrahlung radiation and pair production dominates

 The shower develops like this until secondary particles reaches EC 

where loss by ionization dominated

 Below EC, the number of secondary particles slowly decreases as electrons (photons) are 

stopped (absorbed)

 The shower development is governed by the “radiation length” X0

cascade of secondary particles 



Electromagnetic shower: “powerpoint” example
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Electromagnetic Shower: real example
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EM shower: a simple model
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 “Simple” approach from Heitler

 Assumptions:

 Only 2 dominant processes (brem, pair production) for E>EC (energy loss via ionization/excitation below)

 Assume X0 as a  generation length

 Energy equally shared between the production of each interaction

1 incident photon with E0

After 1 X0: 2 electrons with E=E0/2

After 2 X0, ee’ with E’=E0/4

… 

After tX0, number of particles N(t) = 2t with 

E(t)=E0/2
t

Maximum number of particles  reached at E=EC:

E(tmax)=EC         E0/2tmax=EC
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EM shower: Longitudinal profile
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Electrons in Cu

Shower max grows with ln(E) !



EM shower: longitudinal containment
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Need about 25-30 X0 to contain shower 

(depending on the energy of interest, 

material)

Calorimeter can be compact !



EM shower: lateral profile
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 Lateral shower width determined by:

 Multiple scattering of e+/e- (early, up to shower max) => “core”

 Compton  away from axis (beyond shower max) => “halo”

10 GeV electrons

Radial distributions of EM showers in Cu 

at various depth

The EM shower gets wider with increasing depth… 
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Lateral profile independent of energy.



EM Shower Simulations
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 Electromagnetic processes are well understood and can be very well reproduced by MC simulation:

 A key element in understanding detector performance and particle ID

 ATLAS test beam

 CMS in situ measurement



EM shower: Moliere Radius
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 Moliere radius: characteristic of a material giving the scale of the transverse dimension 

of an EM shower
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Scales as A/Z, while X0 scales as A/Z². much less dependent on material than X0 !



Calorimeter properties of some material
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EM shower: Energy Resolution
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Calorimeter’s resolution is determined by fluctuations. 

 Ideally, if all N secondary particles are detected: E  N => E/E  (N)/N

Fluctuation in N follow Poissonian distribution

 (N)/N  N / N  1/N

 Intrinsic limit / ultimate resolution: determined by fluctuations of number of shower particles.  

 In reality, only a fraction fS of secondary particles can be detected (via ionization, Cherenkov, scintillation …) 

 Nmax = Ntot / Eth, 

where Eth is the threshold energy of the detector, ie, the minimal energy to produce a detectable signal 

(100 eV for plastic scintillators, ~3 eV for semi-conductors…)
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 Other type of fluctuations may impact resolution, eg: 

 Signal quantum fluctuations (photoelectron statistics,….)

 Shower leakage,

 Instrumental effects (electronic noise, light attenuation, structural non-uniformity)

 Sampling fluctuations (in sampling calorimeters)



Homogenous Calorimeter
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Example
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Sampling Calorimeters
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 Sampling Calorimeters:

 Sandwich of high-Z absorber (Pb, W, Ur,…) 

and low-Z active media (liquid, gaz, …)

• Ex: ATLAS (Pb/LAr), DØ (Ur/LAr), … 

 Longitudinal segmentation 

 Energy resolution limited by fluctuations in energy deposited in the active layers 

(ie, the number nch of charged particles crossing the active layers)

 nch increases linearly with incident energy and fineness of the sampling:

nch  E / t, where t=thickness of each absorber layer

For independent sampling:
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For fixed active layers thickness, the resolution should improves as absorber thickness decreases. 



Resolution of sampling calorimeters
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Sampling fluctuations in EM calorimeters determined by sampling fraction (fsamp) and sampling frequency

fsamp: energy deposited in active layers over total energy

d: thickness of active layer  



Calorimeter: Energy Resolution

29

 Calorimeter resolution can be parameterized by the following formula:
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Stochastic term (S): 
 Accounts for any kind of Poisson-like fluctuations (number of secondary particles generated by 

processes, quantum, sampling, etc…)

Noise term (N): relevant at low energy
 Electronics noise from readout system

 At Hadron colliders: contributions from pile-up (from low energy particles generated by additional interactions):

fluctuations of energy entering the measurement area from other source than primary particle. 

Constant term (C): dominant at high energy
 Imperfections in construction, non-uniformity of signal collection, 

fluctuations in longitudinal energy containment, loss of energy in dead material, etc…  



Noise Term
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Electronics integration time was optimized, taking into 

account both contributions for LHC nominal luminosity 

(L=1034 cm-2s-1)

At this luminosity, contribution from noise to an electron 

is typically ~300-400 MeV

Electronics noise vs pile-up noise

(example from LAr ATLAS calorimeter)



Constant Term
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 The constant term describes the level of uniformity of the calorimeter response vs position, 

time, temperature (and not corrected for)

 Leakage: 

 Non-Poissonian fluctuations

 For a given average containment, 

longitudinal fluctuations larger than lateral ones. 

 Front face: Negligible

 Rear face:  

• Dangerous

• Increase as ln(E) 

• Can be removed/attenuated if sufficient X0



Calorimeters: a comparison
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What about muons ?



Muons vs electrons
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Muons are charged leptons, like electrons… but much heavier !

me/m ~ 200
me ~ 0.511 MeV/c²

m ~ 105,66 MeV/c²

 Loss of energy via brem ? 

Remember: 
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Main mechanism for muons is ionization => no “shower” !

EC (e-) in Cu: 20 MeV

EC () in Cu: 1 TeV…



Muon energy loss in Cu
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Muons in calorimeter
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 Muons are NOT “mip” (Minimum Ionizing 

Particles) !

 Effect of radiation can be seen, especially at 

high energy and in high-Z material.

 In Pb (Z=82), EC () =250 GeV

(vs 6 MeV for e-)

 Muon energy deposit in matter NOT 

proportional to their energy



Muons for calorimeter
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 Energy deposits from muons in calorimeter:

 Very little (except for catastrophic loss from radiation)

 Well known

 Local

Muons heavily used to assess: 

 Calorimeter response uniformity (low energy), dead cells,… 

 Analyze the calorimeter geometry,

 Cosmic muons are essential 

part of commissioning of calorimeters !

Ex: CMS ECAL

The intercalibration precision ranges from 1.4% in the 

central region to 2.2% at the high η end of the ECAL 

barrel BEFORE real collisions !
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BACK UP

SLIDES
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