Beams of the "lightest radionuclide useful for hadron therapy": neutron beams for BNCT

<u>Maria Pedrosa</u>^{1,2}, Ignacio Porras², Javier Praena², M. José Ruiz-Magaña², M. Carmen Ruiz-Ruiz², Trevor Forsyth¹, Ulli Köster¹

¹ Institut Laue-Langevin
 ² Universidad de Granada

UNIVERSIDAD DE GRANADA

The chart of nuclides

Principle of BNCT

Accumulate the boron in the tumour cells:

then

Irradiate with neutrons:

BNCT: radiotherapy selective at cell level

Effect of Linear Energy Transfer on cell survival

Glioblastoma multiforme

Clinical results

S. Miyatake et al. J Neurooncol 91 (2009) 199. R.F. Barth et al. Radiat Oncol 7 (2012) 146.

Which boron concentration is required ?

Tolerable neutron fluence: $< 2.10^{13}$ cm⁻²

Probability that one ¹⁰B atom captures a neutron: $3840 \cdot 10^{-24} \text{ cm}^2 \cdot 2 \cdot 10^{13} \text{ cm}^{-2} \approx 7.7 \cdot 10^{-8}$

Number of ¹⁰B atoms per cell to assure >1 capture/cell: >> 10⁷ >>10 million boron atoms per cell !

Boron concentration in tumor ≈ 30 ppm

Infusion of up to 100 mg BSH/kg or 900 mg BPA/kg

Only metabolic targeting, no receptor targeting! Tumor/blood ratio: ≈ 3

Boron delivery agents

New:

boron-rich dendrimers with porphyrin nucleus

Also:

- Nanoencapsulation of carboranes
- Nanogels

 $Na_2B_{12}H_{11}SH$

Which neutron energy is required ?

Which neutron energy is required ?

Neutron sources for BNCT

- Over 700 patients treated at reactors in:
- Japan, Finland, Argentina, USA, Netherlands, Sweden, Taiwan...

Future: accelerators

- Can be integrated into hospitals
- Epithermal neutron spectra from ⁷Li(p,n) or ⁹Be(p,n) reactions
- Challenging targetry (≈10 mA >2 MeV protons)

The Basics of Boron Neutron Capture Therapy

BNCT is a binary radiation therapy modality that brings together two components that when kept separate have only minor effects on cells. The first component is a stable isotope of boron (boron-10) that can be concentrated in tumor cells by attaching it to tumor seeking compounds. The second is a beam of low-energy neutrons. Boron-10 in or adjacent to the tumor cells disintegrates after capturing a neutron and the high energy heavy charged particles produced destroy only the cells in close proximity to it, primarily cancer cells, leaving adjacent normal cells largely unaffected.

Radiobiology knowledge

SNCBI Resources 🖸	How To 🕑		
Public gov US National Library of Medicine National Institutes of Health	PubMed v	(Radiobiol*) Create RSS	AND proton
(Gamma		3627
E	Electron		1113
Å	Alpha		1346
F	Proton		666
(Carbon ions		263
ŀ	Auger		73
٦	Thermal neut	ron	68
1	Neon		66
F	Pion		46

Stopping of radiation

Charged particles:

- quasi-continuous stopping
- by Coulomb interaction with electrons at large distance
- non-destructive detection possible

Neutral particles:

- rare and catastrophic interaction
- destructive detection

How dangerous are slow neutrons?

ICRP Publication 116

Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures

ICRP PUBLICATION 116

Neutron RBE

Reactions relevant for neutron dosimetry

BNCT biological dose

 D_W – equivalent photon dose

$$D_W = w_t D_t + w_f D_f + w_\gamma D_\gamma + w_B [B10] D_{B,1ppm}$$

Both = 3.2 (FiR1), 3.0 (Osaka) for T and N

- Obtained from very few experiments
- Strong variability (1.9 7.1)
- Difficult to separate
- Assumed equal for epithermal beams from reactors (average energy of fast neutrons ~600 keV)
- Gamma contributions (substraction assuming linearity)

Assumed = 1 • D reduction factor < 1 proposed because of the low dose rate (γ from H capture) T = 3.8, N = 1.3, Skin = 2.5 (BPA)

- Obtained for therapy of brain tumors => applied to H&N
- Compounddependent factor

Л	Component	Rad/MW-min	%
BMRR	Gamma ¹⁴ N(n,P) ¹⁴ C H Total	$ \begin{array}{r} 143.0 \\ 47.4 \\ \underline{18.0} \\ 208.4 \end{array} $	$ \begin{array}{r} 68.6 \\ 22.8 \\ \underline{8.6} \\ 100.0 \end{array} $

A human as neutron target

Microscopic nitrogen distribution?

The ILL Reactor

Neutron guides vs. light guides

Neutron guide: $n_{wall} < n_{vacuum} = 1$

Light guide: $n_{core} > n_{cladding} > 1$

Neutron guides: coated with Ni or multilayer

Guided neutron beams are "clean"

Fast neutrons and gamma rays are not transported.

H. Abele et al. Nucl. Instr. Meth. A562 (2006) 407.

Experimental method validated

ILL's Deuteration Laboratory

N 15

0.364

σ 2.4 E-5

ints of Arropa beliadouna grown hydroponically in nutrient solutions can reasing concentrations of D₄O. [Uphnus st at. (29)]

The difficulty of NCT dosimetry D_{BNCT} = RBE_B x [¹⁰B] x D_B + Dγ beam + Dγ capt. + + RBE_{fast} x D_{fast} + RBE_{epi} x D_{epi} + RBE_{th} x D_{th}

RBE factors are derived for a given cell type, dose, dose rate and end point.

Thermal or cold beam from neutron guide: $D_{BNCT} = RBE_B \times [^{10}B] \times D_B + D_\gamma \text{ beam } + D_\gamma \text{ capt. } + RBE_{th} \times D_{th}$

Thermal or cold beam from neutron guide, single cell layer: $D_{BNCT} = RBE_B \times [^{10}B] \times D_B + D_\gamma beam + D_\gamma capt. + RBE_{th} \times D_{th}$

Deuterated cells or ¹⁵N enriched cells: $D_{th} = RBE_H \times D_H + RBE_N \times D_N$