
My analysis experience in LHCb

Chris Burr

23rd January 2019 - Analysis Requirements Jamboree

Image: CERN-EX-66954B © 1998-2018 CERN

https://cds.cern.ch/record/39312

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Final year PhD student and due to submit “soon”

➤ “Primarily” working on analysis and detector alignment in LHCb

➤ Heavily involved in LHCb's Starterkit activities

➤ Young people teaching master’s and first year PhD students

➤ Hoped that students become helpers and teachers the following year

➤ Generally interested in computing and analysis preservation

➤ This is mostly from memory so I might have forgotten details

!2

Who am I?

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ My full analyses:

➤ Measuring charm cross-sections in 13 TeV pp collisions

➤ Measuring charm cross-sections in 5 TeV pp collisions

➤ Search for

➤ Other work:

➤ Feasibility study for D0 2 phi gamma

➤ Alignment studies for the LHCb Upgrade Vertex Locator

➤ Alignment support for test beams

➤ Optimisation of the energy test

!3

Some things I’ve worked on

LHCB-PAPER-2016-042

LHCB-PAPER-2015-041

JINST 13 (2018) no.04, P04011

Currently in internal reviewD+
(s) → h±l+l′�∓

mailto:christopher.burr@cern.ch
https://inspirehep.net/record/1490663
https://inspirehep.net/record/1396331
https://inspirehep.net/record/1648453

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Currently two main ways to get data from LHCb

➤ Most analyses use a constant number of particles (TTrees are flat)

➤ Stripping:

➤ Filter data using hardware trigger then software trigger

➤ Run offline reconstruction

➤ Filter data in centrally ran “stripping campaigns”

➤ Analysts make make TTrees containing information about candidates

➤ Turbo stream: (LHC Run 2 onwards)

➤ Offline reconstruction optimised to be fast enough for the trigger

➤ Use trigger reconstruction

➤ Analysts make make TTrees containing information about candidates

➤ I will only talk about the “offline analysis” step

➤ I’ve done analyses using both, but there is little difference in practice

!4

Data flow

mailto:christopher.burr@cern.ch

Charm cross-sections

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Measure charm cross-sections in 13 TeV pp collisions

➤ Make results for four species: D0, D*+, D+, and Ds+

➤ Measure in bins of the kinematics (pT and η)

➤ Around 90 measurements for each meson (some bins are skipped due to missing entries)

➤ Combine results to give lots of ratios

➤ Data was collected during the 50ns ramp using Turbo

➤ Analysis was developed using Run 1 data and MC

➤ Signal yields ranged from 110,000 to 2,600,000

➤ Paper was submitted ~2 weeks after data taking finished

!6

Overview

LHCB-PAPER-2015-041

mailto:christopher.burr@cern.ch
https://inspirehep.net/record/1396331

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ 3 students developed the analysis code

➤ Almost entirely written in Python

➤ Heavily used PyROOT: Loading data, RooFit, plotting

➤ Used wrappers for TChain, RooFit, …

➤ Code was stored in a private repository on GitHub

➤ 1,582 commits

➤ Single repository, used feature branches and pull requests

➤ 177 pull requests

➤ Almost always reviewed each others code, many PRs have 10+ comments

➤ Incredibly educational having this review

➤ Used Travis CI to lint the code with flake8

➤ Looking at the cross-section code for the first time in 3 years…it’s actually quite nice

!7

Collaboration

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Manually ran the analysis on lxplus every night during later stages

➤ Most code is kept inside a python module

➤ Executed using: python run_analysis_framework.py […]

!8

Pipeline

The actual script is the same except argparse is used and each line is prefixed with if args.run_something

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ 13 TeV code and repository was reused for a 5 TeV measurement

➤ Using data was collected during a special run at the end of 2015

!9

5 TeV analysis

mailto:christopher.burr@cern.ch

Search for .D+
(s) → h±l+l′�∓

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Search for all decays of the form

➤ h is a kaon or pion

➤ l is a muon or electron

➤ 28 measurements in total across 14 final states (8 allowed in SM but very rare, 20 forbidden from LFU/LNU)

➤ 4 additional channels used for normalisation

➤ Expect to set upper limits on the branching fraction for all channels

➤ All code in the analysis framework has been written by me

➤ Try to treat everything the same way to reduce the workload

➤ Electrons emit bremsstrahlung radiation making the fit shapes very

➤ Some channels contain resonances which have to be removed

➤ Different backgrounds are present in different decays

!11

The search for .

D+
(s) → h±l+l′ �∓

D+
(s) → h±l+l′�∓

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Stopped using ROOT except for: pandas.save_hdf(root_pandas.read_root(…))
➤ Now uproot can be used instead

➤ Why?

➤ Conda provides an great Python environment but including ROOT was tedious

➤ Lack of interoperability with standard Python components like numpy, matplotlib

➤ Didn’t always interact well (order of imports suddenly matter, segfaults, JupyROOT crashing Jupyter)

➤ I ended up needing to use ROOT, I’ll come back to this

!12

Analysis without ROOT

NOTE: This has improved since this analysis started

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Almost entirely used Jupyter notebooks

➤ Created GitHub Gists, sent to supervisor, used markdown to explain what was going on

➤ Tried unsuccessfully run notebooks in a pipeline

➤ This might have improved in the last ~3 years

➤ Now I develop code using Jupyter or IPython then copy it to a Python script

➤ Use argparse to make it configurable

!13

Early developments

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Use Snakemake to write pipelines using Python 3 (+syntactic sugar)

➤ Developed for bioinformatics, cited by a large number of publications

➤ Integrates with: conda, singularity, cluster/batch systems, XRootD, GridFTP

➤ Rapidly growing user base in LHCb but the initial learning curve is quite steep

➤ Input data is on the grid (~1,800 files and ~5TB)

➤ Using XRootD to access data at CERN from my institute is slow

➤ Prone to random failures causing errors, or even segfaults within XRootD itself

➤ Can’t use the fallback mechanisms to use other sites instead

➤ I’ve seen other people have issues with firewalls blocking XRootD

➤ Apply preprocessing and download 492 ROOT files (~40GB)

➤ Loose cuts and avoid unneeded variables (makes everything so much faster)

➤ Almost every step is single threaded

➤ Snakemake handles running many steps in parallel

!14

Pipeline

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Overview of stages

➤ Generate toy MC using RapidSim

➤ Calibrate MC using PIDGen (internal LHCb tool)

➤ Perform maximum likelihood fits using RooFit

➤ Compute sWeights using hep_ml

➤ Reweight MC with a BDT using hep_ml

➤ Train a BDT using the scikit-learn interface of XGBoost

➤ Use CLs to compute a limit with RooStats

➤ More details about tools I use can be found in my PyHEP talk

!15

What does the pipeline now do

https://doi.org/10.5281/zenodo.1411453

Start

Fit signal MC KDEs

Run PIDGen

Fit RapidSim KDEs

Fit normalisation channels

Reweight MC

Train BDT

Optimise BDT + PID

Compute efficiencies

Has electrons?

Correct electron efficiency

Yes

Set limit

No

Result

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Similar system to that used for the cross section analyses

➤ Output is stored in cloned_repository/output

➤ Analysis note uses this directory so plots and values are always up to date

➤ ln -s ~/analysis-code-repository/output ~/analysis-note—repository/output

!16

Storing output

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Now contains over 11,000 steps

➤ Takes ~36 hours on a 16 core machine (excluding initial data download)

➤ When finishing the analysis and computing systematics

➤ Could easily rerun everything when issues were found

➤ Rerun large portions of the analysis with data stored to output/systematics/alternative{1"..4}/…

!17

What does the pipeline now do

mailto:christopher.burr@cern.ch

Frustrations and dreams

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Snakemake is Python 3 only

➤ is also using Python 3 only features (f-strings)

➤ Using Python 3 within LHCb quite painful

➤ ROOT is missing from conda (well it was until last week)

➤ Using an LCG view

➤ Causes weird issues, especially once they are nested

➤ Pip and virtualenv don’t work well

➤ Replacing "#!/usr/bin/env python with "#!/usr/bin/env python2 when needed can really help

➤ Despite this, Python 3 is now widely used in LHCb

!19

Python 3

D+
(s) → h±l+l′�∓

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Compiling from source is unreliable and slow

➤ Ideally something install awesome_package should just work for anything

➤ Different stages can have conflicting dependencies

➤ Need to be able to manage multiple environments

➤ Switching should be easy not create conflicts

➤ Should be able to share or preserve an environment

!20

Setting up from environments

See the HSF Packaging WG

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Eventually RooFit and RooStats became necessary for

➤ Nothing is as mature and flexible

➤ Even after switching, this was still the most time consuming part

➤ I find the API is difficult to use, especially from PyROOT

➤ Often hard to see why a fit is failing or what is actually being fitted

➤ It also doesn’t scale for existing datasets

➤ And this will only get worse in the upgrade

➤ It’s immature, but I think the idea of zfit is the way forward

➤ Build on top of a symbolic math library like tensorflow

➤ Lots of features come for “free”:

➤ CPU, GPU and multi GPU support

➤ Underlying graph can be visualised or manipulated

➤ Profiling to find why a fit is slow

!21

Fitting

D+
(s) → h±l+l′�∓

https://github.com/zfit/zfit

mailto:christopher.burr@cern.ch
https://github.com/zfit/zfit

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ It’s often easier to make the problem easier than make the tools faster

➤ Binned vs unbinned fits

➤ Avoiding applying cuts that remove events that are never going to be used

➤ Including every possible variable in TTrees

➤ Choosing functions that are faster to compute

➤ Doing both is even better

!22

Efficiency

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Using the cross-section code

as an example ->

➤ External dependencies are bad

for analysis preservation

➤ Also has a handful of data

dependencies in user’s home

areas

!23

External dependencies

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Takes too long to set up each time

➤ Especially problematic as everyone has access to different systems

➤ Working locally or on a single machine is always more convent

➤ I often see laptops running scripts for a whole weekend

!24

Clusters and batch systems

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Securely authenticating to storage is hard

➤ Generate token for GitLab CI that only has access to one directory

➤ Currently have to expose full CERN password or have a service account

➤ Pipelines can result in a lot of files

➤ My folder has over 80,000 plot, data and log files (~100 GB)

➤ My testbeam alignment folder has 1,368,681 (849 GB)

➤ I end up using local disk storage most of the time

!25

Storage

D+
(s) → h±l+l′�∓

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Everyone has a 128 cores, 1TB ram and 16TB of SSD on their laptop

!26

My dream for an analysis environment

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ Everyone has a 128 cores, 1TB ram and 16TB of SSD on their laptop

➤ That’s not going to happen any time soon…

➤ Try and be slightly more realistic

➤ I often wish I could request 1 big VM or container

➤ Tens of cores and ~1GB of RAM per core

➤ Optionally include a GPU

➤ Mount a ~1TB volume of POSIX-like storage

➤ Doesn’t need to have shared read/write access

➤ Snapshots and cloning would be nice

➤ Everything is contained and easier to preserve (Presumably CVMFS and EOS won’t last forever)

➤ Only resort to batch/cluster/grid resources for very rare cases

!27

My dream for an analysis environment

mailto:christopher.burr@cern.ch

Miscellaneous remarks

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ I frequently refer back to the charm cross-section analysis

➤ I often wish I could see the code when replicating from analysis notes

!29

Archived analyses as documentation

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ My analysis experience in LHCb ○ Analysis Requirements Jamboree

➤ When building pipelines it’s errors can propagate a long way

➤ Much easier to debug if sanity checks are constantly being performed

➤ I tend to do this with assertions in Python

➤ Choosing some randomly examples from with grep:

!30

Assertions

D+
(s) → h±l+l′ �∓

mailto:christopher.burr@cern.ch

Questions?

