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Introduction

I Share my own personal experiences with analysis software and frameworks

I Highlight approaches used by recent analyses with which I was involved:

I tt̄H and same sign WW electroweak production

I Try to answer the questions posed and also share my own personal observations

– ATLAS is large diverse collaboration that published more than 700 papers

– There are many different approaches/views that are equally valid or better

– By my estimate, there are O(dozen) frameworks on ATLAS

I All opinions and mistakes in these slides are all my own
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ATLAS reconstruction workflow

I Very simplified view of ATLAS reconstruction and derivation workflows

– O(300k) production jobs for simulation, reconstruction and derivations

– 10-15 GB/s continuous traffic for data transfers

I Reconstruction xAOD and derived DxAOD use same object and event classes

– xAOD and DxAOD each take of order 60 PB of grid disk - 120 PB total

I xAOD → DxAOD step is performed by central production system

– Jet and b-jet reconstruction executed at derivations step to save disk

– Process O(1000) MC datasets - non-trivial bookkeeping
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ATLAS Analysis Object Data (xAOD)

I Reconstruction xAOD and derived DxAOD use same object and event classes:

– Major effort for Run 2 - C++ code for xAOD data classes

– Common interface for calibration and selection tools that operate on xAOD objects

– Variables stored as auxiliary data - cacheable string to value maps

Structure of xAOD::Muon class

Muon auxiliary data

I User analysis starts from derived DxAOD datasets

– Most analysis groups define own DxAOD filters - O(dozens) DxAOD formats

– Example derivation di-lepton filter for SM group: STDM3.py
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https://gitlab.cern.ch/atlas/athena/tree/master/Event/xAOD
https://gitlab.cern.ch/atlas/athena/blob/master/Event/xAOD/xAODMuon/xAODMuon/versions/Muon_v1.h
https://gitlab.cern.ch/atlas/athena/blob/master/PhysicsAnalysis/DerivationFramework/DerivationFrameworkSM/share/STDM3.py


ATLAS DxAOD derivation sizes

I xAOD → DxAOD step is essentially 1 → 1

I Main advantage is faster processing times for reading DxAOD by analysis users
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Example analysis workflow

Use production framework to create intermediate data format:

I Athena based or standalone frameworks to process DxAOD objects

I Running over complete set of DxAOD datasets takes O(days) on grid

I Output are usually ROOT ntuples or re-derived D2xAOD

I Dedicated software releases that fully specify calibration versions

Use analysis framework for analysis work:

I Frameworks are usually C++ based using ATLAS analysis software releases

I Optimise analysis, make plots, perform studies, etc

I Process O(100s) MC and data datasets - non-trivial bookkeeping

I Usually run on batch systems using order O(100) processes

I Typical turnaround time of O(hours) when using batch
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Example analysis workflow: typical challenges

Typical challenges:

I Four vectors are are rarely if ever sufficient

I Correctly implementing object calibrations and systematic uncertainty - they
change

I Correctly implementing object and event selections

I Bookkeeping for O(100s) MC samples both for production and analysis runs

I Handling special cases, exceptions, crashes, unexpected results

I Analysers may require O(months) to converge on stable/validated
production+analysis setup for a new analysis
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Analysis steps and evolution
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Which kind of main tasks and operations do you perform on data and MC?

I Calibrate objects and compute correction factors with best guess selections

– Often depend on optimised object/event selections - iterative process

I Estimate sources of background events

– Data driven backgrounds require multiple passes over full data/MC - adds complexity

I Optimise selections to maximise signal sensitivity

– Often depends on background estimation uncertainty - iterative process

I Validate/cross-check full analysis

– Check data/MC agreements for many distributions in several control regions

– Cross-check against similar analysis and/or with independent framework

I Produce inputs for statistical analysis

– ROOT histograms or trees

– Requires evaluation of full systematic uncertainty - usually done once

– Statistical analysis is usually performed with another framework/scripts

I Produce publication quality plots

– Plotting code is often included with the framework
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How this change from day zero of preliminary analysis studies to last day before publication?

I I think procedures do not change much - just shift of focus/priority

I One exception is systematic uncertainty and validation against another analysis
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How do you deal with systematics?

I Evaluation of detector systematic uncertainty usually requires special production

– Large set of variations for detector calibrations and corrections

– Often sufficient to perform once when analysis matures and ready for approval

– Can apply full analysis selections and reduce number of plots to speed up processing

– Search-like analyses are usually limited by statistical, background or theory uncertainty

– Precision analyses like Higgs/W/top mass are more sensitive to detector effects

I Evaluation of theory systematic uncertainty usually not as difficult

– Run over dedicated systematic samples and/or apply additional weights

I Evaluation of systematic uncertainty for data driven backgrounds can be difficult

– Typically requires good physics understanding of other background sources

– MC can be unreliable or not have enough events

– Flexible frameworks can be useful to perform dedicated checks and studies
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Analysis interfaces, scaling, reusability, preservation and sharing

I Analysis interfaces

– Personally, I prefer to use ATLAS athena framework with python configuration

– Significant improvements in speed and usability for reading xAOD/DxAOD in Run 2

– EventLoop is very popular with C++ executable - Analysis Software Tutorial

I Scaling

– I find that batch resources are essential for analysis work

– LXBatch is often very useful but limited by amount of user writable storage

– Our university has T3 with 2000 slots and O(700 TB) storage

– Allows fast turnaround: O(day) from DxAOD to final plots - clear benefits

– I tend to use interactive machines mostly for plotting, development and tests

I Reusability

– Similar to CMS, heavy workload to maintain full featured framework

– Frameworks (that I am familiar with) are usually used for many analyses

I Preservation and sharing

– Personally, I feel that it is almost hopeless to reproduce full analysis much later

– Requires detailed knowledge held only by people doing actual work - people move on
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https://atlassoftwaredocs.web.cern.ch/ABtutorial/


Missing functionality → my thoughts on desired framework criteria
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My thoughts on desired framework criteria

Prioritised features for my ideal framework:

1. Results must be correct

2. Reliable, sensible and responsive developers

3. Transparency and readability

4. Ease of use and modularity

5. Design choices, speed and efficiency
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Personal observations

I I find it extremely difficult to write code without bugs

– It is never a question whether there are bugs or not

– Main question seems to be how many and whether they are important

I Rely on usual approaches to code debugging and validation:

– Looking at plots and numbers catches most problems - requires experience

– Compare different frameworks - can be difficult and does not always converge

– Use well maintained framework used by many groups - more eyes help

– Run data/MC comparisons for standard processes like tt̄ and Z + jets

I Experiments have robust review and validation processes

– Serious bugs that significantly change results seem rare?

– In my experience, code analysers for analysis code seem to be rare - too many hits

– When happen, mistakes tend to be logic flaws rather than coding bugs

– Code transparency and readability always help
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Education and tutorials

I ATLAS has excellent software tutorial session

– One week overview of ATLAS software with hands on sessions

– Also introductions to popular frameworks and much more...

I How long does it take to learn C++?

– https://isocpp.org/wiki/faq/big-picture#time-to-learn:

“It takes 6-12 months to become broadly proficient in C++, especially if you havent

done OO or generic programming before. It takes less time for developers who have

easy access to a local body of experts, more if there isnt a good general purpose C++

class library available. To become one of these experts who can mentor others takes

around 3 years.”

I I think that reference framework(s) supported by the experiment are very useful

– Clear design that follows best practices with tutorials and documentation

– Start up kit that implements full analysis workflow (then also useful for cross checks)

– Analysis framework developed by analysis team members should be allowed to get
messy - no choice as this happens when a student hears “We need this plot tomorrow”

– Making framework difficult to hack I think just makes hacks uglier

I Personally, I feel that we should make it higher priority to teach software skills

I Requires resources and strong support by the management and community
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https://isocpp.org/wiki/faq/big-picture#time-to-learn


Analysis framework examples
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ATLAS Common Analysis Framework (CAF)

I Full featured framework with dedicated core developers

– C++ framework implements full analysis workflow from DxAOD to publication plots

– Athena based design for Run 2 with python executables

– Central Concepts of the CAF and code base

– Developed and maintained by the Freiburg ATLAS group

I Used successfully for H → WW and many other ATLAS analyses

I In my opinion, key feature is use of text file configuration for cuts and plots

– Allows arbitrary expressions for cuts and plots

– Can combine dynamically stored variables with quantities computed by user code

– Adding new cuts and plots can be done through configuration files

– Use TTreeFormula to parse string variable names to computations

– Plan to migrate to RDataFrame and CLING
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https://atlas-caf-tutorial.web.cern.ch/node/9
https://atlas-caf.web.cern.ch/QFRAMEWORK_Index.html


My own framework for studies and development

I Read TTree with flat/vector branches to objects in memory

I Map variable names to integers at initialisation step

I Variables stored as (integer, double) pairs using VarHolder base class

I Use TFormula to parse cut/plot expressions and maps them to integers

I Use python to define cuts and xml to define histograms

Ntuple reader:
PhysicsAnpBase
PhysicsAnpData

ROOT TTree

Int_t     Run
ULong64_t Event
Short_t   HLT_mu26

vector<float> m_muon_Pt
vector<float> m_muon_Eta
vector<float> m_muon_Phi

RecoEvent: VarHolder

Key 101 – Run      - 322678
Key 102 – Event    - 17373080
Key 103 – HLT_mu26 - 1

RecMuon: VarHolder
Key 201 – Pt  - 34490.1
Key 202 – Eta - 1.379
Key 203 – Phi - 2.189

RecMuon: VarHolder
Key 201 – Pt  -  7982.7
Key 202 – Eta - -0.278
Key 203 – Phi -  0.789
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Example of python configuration:

alg = AlgConfig(’prepCand’, ’PrepCand’)

alg.SetKey(’Debug’, ’no’)

alg.SetKey(’SaveHist’, ’yes’)

alg.SetKey(’HistKey’, ’PlotMuon’)

muon_cuts = [CutItem(’CutPt’, ’Pt > 6.0e3’),

CutItem(’CutPID’, ’Medium == 1’)]

addCuts(alg, ’CutMuon’, muon_cuts)

Corresponding C++ class definition:

namespace Anp

{

class PrepCand: public virtual AlgEvent,

public virtual AlgBase

{

public:

bool fDebug;

bool fSaveHist;

Ptr<CutFlow> fCutMuon;

Ptr<HistKey> fHistMuon;

};

}

C++ code that reads configuration:

void Anp::PrepCand::Config(const Registry &reg)

{

reg.Get("Debug", fDebug = false);

reg.Get("SaveHist", fSaveHist = false);

fCutMuon = BookCut("CutMuon", reg);

fHistMuon = BookHist(reg);

}

C++ code that applies cuts and fills histograms:

for(Ptr<RecMuon> &muon: event.GetVec<RecMuon>()) {

if(fCutMuon->PassCut(muon.ref())) {

fHistMuon->FillHists(muon.ref(), 1.0);

}

}
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Example of python configuration:

alg = AlgConfig(’prepCand’, ’PrepCand’)

alg.SetKey(’Debug’, ’no’)

alg.SetKey(’SaveHist’, ’yes’)

alg.SetKey(’HistKey’, ’PlotMuon’)

muon_cuts = [CutItem(’CutPt’, ’Pt > 6.0e3’),

CutItem(’CutPID’, ’Medium == 1’)]

addCuts(alg, ’CutMuon’, muon_cuts)

Histogram definitions in PlotMuon.xml:

<histograms>

<dirbase dirs="PlotMuon" />

<hist key="Pt" name="" title="">

<Xaxis bin="50" min="0.0" max="250.0e3" title="Muon p_{T} [MeV]" />

</hist>

<hist key="Eta" name="" title="">

<Xaxis bin="60" min="-3.0" max="3.0" title="Muon #eta" />

</hist>

</histograms>
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The End
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BACKUP
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I Single athena based package built with AthAnalysisBase release

I Python code to configure tools and select output variables

I C++ readers to apply calibrations/pre-selections, writer to save ntuples

Configuration example for muon reader:

alg = CfgMgr.Ath__ReadMuon(’readMuons’)

alg.inputContainerName = ’Muons’

alg.outputVectorName = ’m_muon_’

alg.configMuonCuts = [’Pt > 5.0e3’, ’Loose > 0’]

alg.triggersHLT = [’HLT_mu26_ivarmedium’, ’HLT_mu50’]

alg.auxVars = [’MuonSpectrometerPt’, ’InnerDetectorPt’]

Configuration example for writer and defining output muon variables:

muon_vars = [’Pt :type=Float’,

’Eta :type=Float’,

’Phi :type=Float’,

’HLT_mu26_ivarmedium :type=Short’,

’HLT_mu50 :type=Short’,

’MuonSpectrometerPt :type=Float’,

’InnerDetectorPt :type=Float’]

write_tool = CfgMgr.Ath__WriteEvent(name)

write_tool.branches = [’m_muon_|%s’ %(’,’.join(muon_vars))]
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