
Stephan Hageboeck

+

The (Technical) Challenges of Finding a <Particle>

Stephan Hageböck�

29.01.2019

Stephan Hageboeck

2

Intro

n  PhD in ATLAS

n  VH à Vbb search

n  Worked for University of Bonn

n  Group-local analysis framework

n  Local computing cluster (~500 logical CPUs)

n  Main topics:

n  Object + event selection

n  Machine learning

n  Statistical Models

n  Now:

n  ROOT team

n  Work on improving RooFit

Stephan Hageboeck

3

Analysis Work^low

1.  Monte Carlo simulation, reconstruction: centrally on grid

2.  Skim & slim samples, apply some (centrally provided) calibrations

3.  Modelling checks

1.  Apply ATLAS corrections

2.  + analysis-speci^ic correct.

3.  Compare Data & MC

4.  Compare MC & MC

5.  Derive corrections

6.  Cross-checks

7.  Re^ine selection

5.  Train MVA

6.  Evaluate uncertainties

7.  Statistical Model�
(RooFit model created
from thousands of�
analysis histograms)

8.  Cross checks

9.  Results

Note to self: How did steps evolve?

Grid

Stephan Hageboeck

4

Analysis Work^low

ATLAS Software Tutorial

G
ri

d

Stephan Hageboeck

5

Personal Work^low

n  Grid:

n  Centrally provided ATLAS software stack, small own modules

n  Afterwards:

n  ssh à university cluster, of^ice computer

n  Develop & test on of^ice computer�
Happy ? CheckIn() : Repeat()

n  Check out on cluster, submit jobs

n  Software: Always from CVMFS + own git

n  NB: Never analysis on laptop

n  Reason: Heavy lifting happens on university cluster�

à Don’t want to maintain 2 setups

n  1 job on laptop is ok, but need ~600 jobs for full analysis

n  Looking at root ^ile on laptop is ok

Stephan Hageboeck

6

Analysis Interface

n  Early steps ATLAS-central: e.g. Tracking, jet clustering

n  Next steps (My opinion):

n  For a suf^iciently complex (=normal) analysis, a non-trivial framework is necessary

(not provided by ATLAS / ROOT)

n  Bonn approach: The “Overkill” C++ framework

n  C++, compiled into libraries

n  Does everything from calibrating, selecting, categorising to ^illing histograms

n  Either load into interpreter or compile into simple executable

n  Job submission:

n  Python script to collect & manage input ^ile and con^igs

n  Automatic splitting and scheduling: submit.py --events 300000

n  Submit analysis jobs to PBS cluster (optionally: grid)

n  + merge jobs

n  + output collector job

n  Check	with	GUI!	

Stephan Hageboeck

7

The Heavy Lifting: C++ Framework

n  ~ 240 MC samples scattered over ~ 1000 – 2000 root
^iles. More or less ^lat, but rebuild objects from
branches. ~ 5 Tb

n  Each job has data ^low between modules by reading /
writing branches

n  Only things that actually change get written to mem�

(disc):

n  Index branches

n  Calibrated energies

n  My experience: It’s nice to have con^igurable modules

n  Module	with	standard	ATLAS	calibrations	
n  Swap in/out different selections using con^ig ^ile

n  Snapshot subset of “active” branches at any point (e.g. to

train MVA)

n  Run 30 sec test job and immediately look at histograms

à Interactivity & exploratory analysis

Object Calib./
Selection

Analysis
Sequence

Histograms

Input
branches

Index
branches

Stephan Hageboeck

8

The Heavy Lifting: C++ Framework

n  Want: Interactive & automated processing
of many ^iles with changing con^igs

n  Con^ig needs to handle both cases easily:�
Con^igurable modules & cuts

n  Want to be able to book different
selection / calibration tools�
à Create different analysis branches

n  Cut ^low histograms should drop out
automatically	

n  	Does	this	
collide	with	 ?	

Stephan Hageboeck

9

This was a game changer

Stephan Hageboeck

10

Config inheritance

Regex searches

This was a game changer

Stephan Hageboeck

11

Missing: Ef^iciently Checking Histograms

n  Work^low reminder:

n  Test & develop on single sample, iterate

n  When ok, send jobs for all samples

n  Merge & retrieve histograms from hundreds of jobs

n  Many people: Plotting macro

n  Overkill:�
ShowMulti(ple types)

n  Rapidly show stacked,�
scaled & coloured�
histograms

Path with regex & globbing

Lumi + Filter Eff
for auto-scaling

ShowMulti inputs:

Stephan Hageboeck

12

Missing: Ef^iciently Checking Histograms

This was the game changer

Reads histograms from
O(100) root files

Stephan Hageboeck

13

Missing: Ef^iciently Checking Histograms

This was the game changer

Stephan Hageboeck

14

Analysis Work^low: Final Steps

1.  O(10k) Bonn histograms scattered over one or more ^iles per sample

2.  Collect, rename, merge into ATLAS Hàbb format using Overkill’s ShowMulti.
Obtain single output ^ile with histograms.

3.  ATLAS-Hàbb-speci^ic renaming & splitting tool puts histograms into
different ^ile structure

4.  ATLAS-Hàbb-speci^ic tool (WSMaker) creates RooFit workspaces

5.  Standard ATLAS macros run to extract/cross-check results�
(Batch cluster)

n  Could have been simpli^ied, but histogram naming was up to each group when
analysis was set up

n  RooStats::HistFactory interface seemingly too complicated�
(at least I know someone who is responsible now)

Stephan Hageboeck

15

Scaling

n  Bonn: Create objects from less-derived inputs always run ATLAS calibrations,
object / event selection, overlap removal

n  Turn around:

n  30 sec for 40k events on signal sample (test & develop, of^ice computer)

n  ~ 1 h for data and all nominal MC (cluster)

n  6 – 8 h for all systematics (cluster)

n  Could easily (~ 2h) check new calibrations, selection strategies, cut^low, new
systematics, overlap removal procedure

n  Others:

n  Centrally-produced ntuples with most calibrations, object selection, overlap removal

applied

n  Turn around:

n  Nominal histograms: ~ mins for histograms from nominal ntuple

n  Nominal ntuple: ~ days (Grid) + ~ days for testing

n  2 – 3 weeks for all ntuples with all systematics

I	value	this	approach,	but,	does	
not	scale	inde4initely	

Stephan Hageboeck

16

Group NTuples and Data Duplication

n  From talking to people:�
I have the feeling that people produce 1 ntuple per syst. uncertainty

n  > 90% of branches are copied

n  Friend trees or decorators are the solution

n  Possible reasons:

n  Frameworks don’t provide easy-enough interface to do better

n  People want a simple ntuple to “just make histograms”

n  Everything must be super ^lat, preferably no objects

n  Should we try to help here? This problem has been solved many times …

Stephan Hageboeck

17

Reusability & Moving Targets

n  Branch names changed often

n  Renamed, new software

release

n  Read ntuples from different

groups

n  Overkill in use for Hàbb, Z à

µµ, Z à bb analysis

n  Overkill solution:

n  Try different names until

success

n  Switch on/off branches based

on features required by tools�
(faster processing)

n  Automatic conversions (to
higher precision types) in case
branch type changes

n  Switching to new inputs took ~ hours / 1
– 2 days (only once)

n  Backward compatible / ^lexible

Stephan Hageboeck

18

Evaluating Systematic Uncertainties

n  Object uncertainties:

n  Book different object calibration/selection

sequences

n  Write index branches + decorators for each

uncertainty

n  Run the analysis sequence

n  Uncertainty-agnostic

n  Easy to con^igure/program

n  Weight (=probability) uncertainties:

n  Run weight calculation sequence, i.e.�

retrieve probabilities from ATLAS + analysis-local
tools

n  Each uncertainty provider adds one element to a
vector of weights + a vector of uncertainty�
names

Object Calib./
Selection

Analysis
Sequence

Object Calib./
Selection Object Calib./

Selection

Histograms

Input
branches

Index
branches

Weights

Data

Stephan Hageboeck

H1_1L

n  Or: Why�
�
�
doesn’t cut it

n  An analysis module should be able to ^ill a set of standard histograms

n  Debugging, investigations, cross-checks, understand what’s going on, results

n  Don’t want to book (and con^igure) manually the set of histograms, and
manage them

n  Before cut C, after cut D

n  For lepton pT, eta, phi, E

n  For electron collection A, B, C

n  For systematic uncertainty XXX

n  For category YYYY

19

Missing: A Histogram Categoriser

H1

H1_1L H1_2L

H1_1L
H1_1L

H1_1L
H1_2L

H1_1L
H1_1L

H1_1L
H1_1L

H1_1L

Stephan Hageboeck

20

Missing: A Histogram Categoriser

n  Overkill solution: “Histogram List”

n  initialise():�
Book histogram list that can take any number of variables from objects
provided during execute(), creates histograms for all of them

n  execute():�

n  One call ^ills various histograms using the ILepton_t interface (con^igurable)

n  Automatically categorises into systematics, analysis categories, cut stages ….

n  Automatically creates folder structure + name pre- and suf^ixes

n  See a bit more code in backup

Stephan Hageboeck

21

Missing: Multi-MVA Inference Tool

n  Often need to test multiple classi^iers trained with different con^igurations

n  Order or variables different

n  Different sets of variables in use

n  Other machine-learning toolkit

n  Model from different group (i.e. different naming)

n  Multi-MVA inference tool:

n  Parse (TMVA / xgboost / ...) con^igs, extract variables needed

n  Request	variables	from	Overkill	+ Regex-Match to category names

n  If not found: Ask user to provide mapping from e.g. jet0_pT àpt_jet0

The game changer:
•  The framework automatically

provides / maps variables
that tools/MVAs require

•  No configuration, coding
necessary

Stephan Hageboeck

22

Reproduce Analysis?

n  The short answer: Possible, but not really

n  Longer:

n  RooFit workspaces and histograms archived

n  Code archived

n  Most of documentation in TWiki

n  But:

n  Don’t have the machines to run it (Containers being archived in the future)

n  No Monte Carlo / Data available (need to regenerate, takes forever)

n  Who knows how to run these steps?�
à .bash_history

n  Would notebooks help?

n  Yes and no (see summary)

Stephan Hageboeck

23

Summary

n  I never understood the fuzz about dataframes, notebooks, “let’s get ^lat”

n  Heavy (ATLAS central) & medium lifting (group framework) use 90% (?) of CPU

cycles

n  Keep this in mind for future software needs? This might be the bottleneck

n  Notebooks, dataframes & Co are nice!

n  Think of Master/Bachelor students: Signi^icantly lower the bar

n  But: Work only for the “simple” steps of the analysis�

Someone has to do the heavy lifting before …

n  By ignoring “let’s get ^lat and super simple as fast as possible”, we (Bonn)
contributed a lot to solving the dif^icult problems of new analyses

Stephan Hageboeck

24

Stephan Hageboeck

25

Missing: A Histogram Categoriser

n  The Overkill solution: Book (once when analysis module initialised)

n  Register automatically, label axes, book into folder

n  Later (in various places):

Configure binning
from outside
Inherited for all
modules

Stephan Hageboeck

26

Missing: A Histogram Categoriser

n  The Overkill solution: Book (once when analysis module initialised)

n  Register automatically, label axes, book into folder

n  Later (in various places):

Read a value
from an object
stored in a provider

Stephan Hageboeck

27

Missing: A Histogram Categoriser

n  Bene^its:

n  Can histogram any electron multiple times at any stage of the analysis with

different weights

n  cut_stage is incremented between selection steps, and switches between

histograms before/between/after selection steps

n  cut_stage can be expanded by an object/cut/systematic categorisation tool:

n  Result:

n  Book few histograms, get one for every cut stage, systematic, category …

n  Automatic sorting into folders / automatic name pre-/suf^ixes

n  Module does not have to know systematics / analysis categories

