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Library Approach
◊ We have train sample for the generative model  

◊ consistency with this train sample is a figure of merit for the generative 
model 

◊ Objects of the train sample may be used for generation directly 

◊ remember KNN classification algorithm 

◊ k=1 - straightforward 

◊ the only drawback - search for the object with appropriate conditions in 
the (presumably huge) data library  

◊ k>1 - problem to interpolate between objects 

◊ short distance objects interpolation, more robust than global generation  

◊ NB: this approach by construction uses full information which is 
contained in the training sample
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Generative Models at LHC
◊ About 80% of computing resources are used for MC simulation 

in HEP experiments 

◊ Calorimeter simulation is one of bottlenecks 

◊ RICH is the next in the row for LHCb detector 

◊ > 85% of simulation is taken                                                                         
by these  

◊ Can not expect exponential                                                             
rise of CPU performance 

◊ Need work around for Run3                                                            
and HL-LHC 

◊ Generative models trained on                                                          
the detailed GEANT simulation may be a solution
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Example: Fast Simulation of the ECAL Response

◊ ECAL takes the most time in the LHCb event simulation
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GAN

◊ Implicit p(x|y), sampling only
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https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
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LHCb ECAL Fast Simulation: GAN
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LHCb ECAL Simulation
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VAE

◊ VAE allows calculate p(x|y) explicitly 

◊ NB: GAN only allows sampling from p(x|y) 

◊ … but smaller size of latent dimensions 

◊ blurry objects
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LHCb ECAL Fast Simulation: VAE
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Decoder

Output of encoder is a parameters of 
latent variable distribution

Input: X, 
pictures

Input, 
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VAE in 5D
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ECAL Single Cluster Properties
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Primary and Marginal Distributions

◊ Is hard to fit marginal distributions 

◊ unless the model is aware that those are important for us
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Natural Requirements

◊ For image generation we are usually happy if the result looks 
like it is desired 

◊ In science we need the result to reasonably well match the 
given set of requirements. This target set is driven by scientific 
considerations to reach the ultimate scientific goal 

◊ e.g. we could want E2-p2=m2 for generated particles 

◊ Explicit control to satisfy requirements is preferable 

◊ e.g. exclude E from generated features, set it explicitly from 
generated p
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Enforcing Important Statistics

◊ No generative model is ideal 

◊ some deviations from the original distribution remain 

◊ Model tends to learn primary statistics of generated objects 

◊ In physics applications we mostly need our model to learn 
some particular statistics which may be marginal to the 
generated object  

◊ e.g. cluster shape fluctuations for fast calorimeter simulation 

◊ Can enforce these statistics by explicit adding them to the los 

◊ can’t we?
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Enforcing Important statistics

◊ Can enforce statistics by explicit adding them to the los 

◊ can’t we? 

◊ By adding statistics into the loss we do enforce match for these 
statistics 

◊ most likely by the price of overtraining these particular statistics 

◊ … and we lose handle to validate quality of generator on this statistics 

◊ Still can remove those statistics from loss, and see how far 
they would deviate  

◊ figure of merit for generating this statistics
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Generative Models Trained on Real Data

◊ Real data samples, even calibration, 
are never 100% clean 

◊ contamination from events with different 
labels/conditions 

◊ Can not determine label of particular 
object uniquely 

◊ however can statistically determine 
fractions of different labels  

◊ Can use weighted samples to train 
WGAN and CramerGAN
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Completeness

◊ Domain for the generative 
model is driven by the training 
sample 

◊ model can not extend beyond the 
train domain even if produces 
high statistics 

◊ until explicitly set to behave 
beyond train domain
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Decomposition
◊ Quality of the generative models is limited by the size of the train data 

sample 

◊ generative models may not give profit for producing statistically correct big data 
sets 

◊ no information beyond the train sample is available 

◊ Not quite if we can decompose generative model into separate components 

◊ random combinations of different components may drastically increase variativity
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Decomposition
◊ Quality of the generative models is limited by the size of the train 

data sample 
◊ generative models may not give profit for producing statistically 

correct big data sets 

◊ no information beyond the train sample is available 

◊ Not quite if we can decompose generative model into separate 
components 

◊ random combinations of different components may drastically 
increase variativity 

◊ E.g. fast simulation of the calorimeter response 

◊ generator is trained on 106 incident particles 

◊ ∼50 particles in the calorimeter per event 

◊ total variativity  ∼(106)50 = 10300 !
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Quality Metric
◊ No generative model is ideal 

◊ some deviations from the original distribution remain 

◊ Minor deviations are not that important e.g. for image 
generation 

◊ Minor deviations may be a big deal for physics generative 
models 

◊ e.g. we could want E2-p2=m2 for generated particles to be precise 

◊ Ultimate generative model quality metric is comparing final 
physics result obtained using generative model, and the one 
obtained using train data 

◊ accuracy is limited by the size of the train data 
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Conclusions
◊ Surrogate generative models demonstrate extraordinary progress in 

current years 

◊ Fast simulation for LHC detectors in Run 3 is a natural target 

◊ fast simulation of calorimeters is a primary target 

◊ Generative models need attention ensure scientifically solid results  

◊ completeness of generated sample 

◊ satisfying boundary conditions, control of scientifically important but marginal 
statistics 

◊ evaluating quality of the model, propagate model imperfections to systematic 
uncertainties of the final scientific result   

◊ We developing different approaches for fast generation of calorimeters 
in LHCb 

◊ results look promising, but not production quality yet
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