

Generative Models and Calorimeter Fast Simulation for the LHCb

Fedor Ratnikov for the team HSF Simulation Meeting Mar. 6, 2019

Library Approach

- We have train sample for the generative model
 - consistency with this train sample is a figure of merit for the generative model
- Objects of the train sample may be used for generation directly
 - remember KNN classification algorithm
 - k=1 straightforward
 - the only drawback search for the object with appropriate conditions in the (presumably huge) data library
 - ♦ k>1 problem to interpolate between objects
 - short distance objects interpolation, more robust than global generation
- NB: this approach by construction uses full information which is contained in the training sample

Generative Models at LHC

- About 80% of computing resources are used for MC simulation in HEP experiments
 - Calorimeter simulation is one of bottlenecks
 - RICH is the next in the row for LHCb detector
 - ♦ > 85% of simulation is taken by these
- Can not expect exponential rise of CPU performance
- Need work around for Run3 and HL-LHC
- Generative models trained on the detailed GEANT simulation may be a solution

Example: Fast Simulation of the ECAL Response

ECAL takes the most time in the LHCb event simulation

GAN

https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

Implicit p(xly), sampling only

LHCb ECAL Fast Simulation: GAN

Training scheme

LHCb ECAL Simulation

GEANT Simulated

log₁₀(cell energy)

GAN Generated

GEANT Simulated

log₁₀(cell energy)

GAN Generated

Variational Autoencoder

- We want to sample from latent space
- Split into mean and standard deviation
- Add penalty term (Kullback-Leibler divergence) so mean/std are close to unit Gaussian

kvfrans towardsdatascience.com 79

- VAE allows calculate p(xly) explicitly
 - NB: GAN only allows sampling from p(xly)
- ... but smaller size of latent dimensions
 - blurry objects

LHCb ECAL Fast Simulation: VAE

Decoder

$$Loss = KL(N(\mu_{latent}, \sigma_{latent}^2)||N(0, 1)) + Logprob(X, (\mu, \sigma)) + Logprob(mask, b)$$

VAE in 5D

GEANT Simulated

VAE Simulated

ECAL Single Cluster Properties

Primary and Marginal Distributions

- Is hard to fit marginal distributions
 - unless the model is aware that those are important for us

Natural Requirements

- For image generation we are usually happy if the result looks like it is desired
- In science we need the result to reasonably well match the given set of requirements. This target set is driven by scientific considerations to reach the ultimate scientific goal
 - \diamond e.g. we could want E²-p²=m² for generated particles
- Explicit control to satisfy requirements is preferable
 - e.g. exclude E from generated features, set it explicitly from generated p

Enforcing Important Statistics

- No generative model is ideal
 - some deviations from the original distribution remain
- Model tends to learn primary statistics of generated objects
- In physics applications we mostly need our model to learn some particular statistics which may be marginal to the generated object
 - e.g. cluster shape fluctuations for fast calorimeter simulation
- Can enforce these statistics by explicit adding them to the los
 - can't we?

Enforcing Important statistics

- Can enforce statistics by explicit adding them to the los
 - can't we?
- By adding statistics into the loss we do enforce match for these statistics
 - most likely by the price of overtraining these particular statistics
 - ... and we lose handle to validate quality of generator on this statistics
- Still can remove those statistics from loss, and see how far they would deviate
 - figure of merit for generating this statistics

Generative Models Trained on Real Data

- Real data samples, even calibration, are never 100% clean
 - contamination from events with different labels/conditions
- Can not determine label of particular object uniquely
 - however can statistically determine fractions of different labels
- Can use weighted samples to train WGAN and CramerGAN

Completeness

- Domain for the generative model is driven by the training sample
 - model can not extend beyond the train domain even if produces high statistics
 - until explicitly set to behave beyond train domain

Decomposition

- Quality of the generative models is limited by the size of the train data sample
 - generative models may not give profit for producing statistically correct big data sets
 - ono information beyond the train sample is available

Decomposition

- Quality of the generative models is limited by the size of the train data sample
 - generative models may not give profit for producing statistically correct big data sets
 - no information beyond the train sample is available

- Not quite if we can decompose generative model into separate components
 - random combinations of different components may drastically increase variativity

Decomposition

- Quality of the generative models is limited by the size of the train data sample
 - generative models may not give profit for producing statistically correct big data sets
 - no information beyond the train sample is available
- Not quite if we can decompose generative model into separate components
 - random combinations of different components may drastically increase variativity
- E.g. fast simulation of the calorimeter response
 - generator is trained on 10⁶ incident particles
 - ⋄ ~50 particles in the calorimeter per event
 - \diamond total variativity $\sim (10^6)^{50} = 10^{300}!$

Quality Metric

- No generative model is ideal
 - some deviations from the original distribution remain
- Minor deviations are not that important e.g. for image generation
- Minor deviations may be a big deal for physics generative models
 - \diamond e.g. we could want E²-p²=m² for generated particles to be precise
- Ultimate generative model quality metric is comparing final physics result obtained using generative model, and the one obtained using train data
 - accuracy is limited by the size of the train data

Conclusions

- Surrogate generative models demonstrate extraordinary progress in current years
- Fast simulation for LHC detectors in Run 3 is a natural target
 - fast simulation of calorimeters is a primary target
- Generative models need attention ensure scientifically solid results
 - completeness of generated sample
 - satisfying boundary conditions, control of scientifically important but marginal statistics
 - evaluating quality of the model, propagate model imperfections to systematic uncertainties of the final scientific result
- We developing different approaches for fast generation of calorimeters in LHCb
 - results look promising, but not production quality yet

