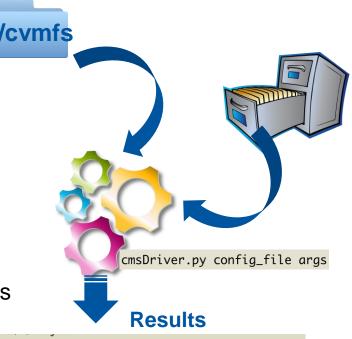
HEP Reference Workloads in Containers

<u>D. Giordano</u> (CERN) domenico.giordano@cern.ch

HEPiX Benchmarking WG 18 Jan 2018


Objective: standalone HEP benchmark

workloads

HEP workloads' ingredients:

- 1. SW repository (cvmfs)
- 2. Input data (root files and DB conditions)
 - Typically accessed via xrootd
- 3. An orchestrator script
 - Configure environment
 - Run HEP SW
 - Parse produced output and create score results

We are encapsulating all this in standalone containers

{"copies":1 , "threads_x_copy":1 , "events_x_thread" :
100 , "CPU_score": {"score": 1.2642, "avg": 1.2642, "
median": 1.2642, "min": 1.2642, "max": 1.2642} , "app"
: "KV_17.8.0.9_SingleMuon"}

HEPiX Bmk WG

Why adoption of standalone containers?

Requirements for a HEP benchmark suite

(As discussed in previous meetings)

- Must be adopted not only by individuals inside the experiments but also by external performance experts, site procurement teams and hardware vendors
 - Usability:
 - Simple instructions: Insert disk, run shell script, wait, and read and report score
 - docker run --rm -v /tmp/results/:/results \$IMAGE
 - Accessibility:
 - · No remote data access from vendor's office
 - With containers the benchmark can be distributed as full tarball in a drive
 - Free License:
 - · Follow the experiment code license
 - Long term commitment from the experiments
 - Provide the software support for several years
 - Code is in cvmfs. Data preservation initiatives can support it

Example: LHCb

- Starting from the Concezio's doc [*]
 and with the help of Ben Couturier
- Prepare the orchestrator script [**]
 - Launches a configurable number of parallel processes (and events)
 - Log Parser to extract results
- Prepare the Dockerfile and spec file
- Run the standalone container builder
 - The magic copy happens here
- Publish the standalone container in gitlab registry
 - Try it yourself
 - docker run gitlab-registry.cern.ch/giordano/hep-workloads/lhcb-gen-sim.ounates

/	source /cvmfs/ <u>lhcb.cern.ch/lib/LbLogin.sh</u>
(=	lb-runuse-grid -c x86_64-slc6-gcc48-optuse="AppConfig v3r335" \
	-use="DecFiles v30r11"use="ProdConf" Gauss/v49r9 gaudirun.py -T \ '\$ <u>APPCONFIGOPTS</u> /Gauss/ <u>Beam6500GeV</u> -md100-2016-nu1.6. <u>py</u> ' \
	*APPCONFIGOPTS/Gauss/EnableSpillover-25ns.py' \
	'\$APPCONFIGOPTS/Gauss/DataType-2016.py' \
	'\$APPCONFIGOPTS/Gauss/RICHRandomHits.py' \ '\$DECFILESROOT/options/27163076.py' \$LBPYTHIA8ROOT/options/Pythia8.py' \
	SPECILESROOT/Options/2/1630/6.py SECTIMAGROOT/Options/Pytha8.py (SAPPCONFIGOPTS/Gauss/G4PL FTFP BERT EmNoCuts.py'\
	'\$APPCONFIGOPTS/Persistency/Compression-ZLIB-1.py' \
$ \longrightarrow $	'prodConf_Gauss_00071400_00000089_1.py'
🖹 lhcb-bmk.sh	
parseResults.s	h
	{copies:4 , threads_x_copy:1 , events_x
■ prodCont_Gaus	ss_00071400_00000089_1.py _thread : 5 , throughput_score: {score:
(18.1333, avg: 4.5333, median: 4.5647,
hcb-br	mk [min: 4.4347, max: 4.5693}, app: LHCb f ull sim chain}
Docker	
E Docker	file.template
🖹 lhcb-br	mk.spec
I./run_bu	uild.sh /root/hep-workloads/lhcb/aen-sim/lhcb-bmk.spec

∧ giordano/hep-wo			
Tag	Tag ID	Size	Created
buildtest 🕒	f9670e820	709.33 MiB	2 hours ago

Status of inclusion of HEP Workloads

	Stage	Release	Orchestr	Run w/ cvmfs	Standalone container	Validation standalone container
ALICE	Full sim	v5-09-XX-15 v5-09-09-01- 1	<i>~</i>	\checkmark		✓ IMAGE=gitlab-registry.cern.ch/giordano/hep-workloads/alice-gen-sim:latest
	Gen	19.2.5.5	\checkmark		✓ 1.32GB	${\mathscr O} IMAGE=gitlab-registry.cern.ch/giordano/hep-workloads/atlas-gen-bmk:latest$
ATLAS	Sim	21.0.15	\checkmark			
	Digi-Reco	21.0.23	\checkmark			
CMS	Gen-Sim	10_2_9	\checkmark			${\mathscr O} IMAGE=gitlab-registry.cern.ch/giordano/hep-workloads/cms-gen-sim:latest$
	Digi					
	Reco					
LHCb	Full sim chain		\checkmark	<	≪ 2.31GB	V IMAGE=gitlab-registry.cern.ch/giordano/hep-workloads/lhcb-gen-sim:latest

▲□ some files (conditions/configuration) still from Frontier

To run a HEP standalone container: docker run --rm --network=host -v /tmp/results/:/results \$IMAGE

To Do List: Infrastructure

#	Description	Status
1	Implement a fully automated procedure to build a standalone container image for each HEP reference workloads	<i>⊗</i>
2	Create containers starting from Experiments' recipes (see previous slides)	✓ GEN-SIM□ DIGI-RECO
3	Implement Gitlab Continuous Integration approach for long term maintainability (see https://gitlab.cern.ch/giordano/hep-workloads/pipelines)	~
4	Consolidate the CI approach	
5	Integration in the benchmarking suite	
6	Test migration to singularity containers	

 $\square \Leftrightarrow$ To be done. Looking for volunteers

To Do List: Workloads

- Here we expect the feedback of the Experiments

#	Description	Alice	Atlas	CMS	LHCb
1	Confirm that running workload is the desired/updated one for benchmarking	\triangleleft	\triangleleft	\checkmark	\ll
2	Can it run without any assumption, but /cvmfs and local input files? Can it run without internet WAN access?				
3	Identification of the benchmarking metrics from log files				
4	Define running conditions (#threads, #events), "equalize" job duration, normalize scores				
5	Study reproducibility of results				
6	Can the container image size be reduced with smaller input data?				

□ ⇔ To be done. Looking for volunteers
 ▲□ some files (conditions/configuration) still from Frontier

Conclusions

- Very good progress
 - Gen-Sim HEP benchmark workloads are in containers
 - Accessible by everyone
 - Current limitation: need to use --network=host in order to access Frontier (Atlas and CMS)
 - Looking for volunteers to try and provide feedback
- Long To Do List
 - Integration area & Workloads (benchmarking) area
 - Looking for volunteers and experts from the experiments
 - Contact me directly or the WG mailing list hepix-cpubenchmark@hepix.org

HEPiX Bmk WG

Image credits

- <u>https://pixabay.com/en/server-small-rack-computer-grey-297721/</u>
- <u>https://pixabay.com/en/stick-usb-usb-stick-flash-drive-157819/</u>
- <u>http://www.publicdomainfiles.com/show_file.php?id=13939197614279</u>
- https://pixabay.com/en/cabinet-data-file-icon-information-1293245/
- https://pixabay.com/en/gears-machine-thinking-teamwork-2135326/

