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Hints from the sky

Plateau models of inflation are consistent with Planck data.
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Figure 1: Each figure shows the evolution of the comoving horizon distance over time.
Each figure shows the extreme cases for wre: the first figure for wre = 1 and the second for
wre = �1

3 .

If one assumes a constant equation of state, the change in the scale factor during reheating is
easily related to the change in the energy density. Using ⇢ / a�3(1+w), the reheating epoch
is described by

⇢end

⇢re
=

✓
aend

are

◆�3(1+wre)

, (2.1)

where the subscript end refers to the end of inflation (the start of reheating), and re refers
to the end of reheating. Writing this in terms of e-foldings

Nre =
1

3(1 + wre)
ln

✓
⇢end

⇢re

◆
=

1

3(1 + wre)
ln

✓
3

2

Vend

⇢re

◆
, (2.2)

where the last step of (2.2) is obtained by replacing ⇢end = (3/2)Vend, derived by setting
w = �1/3 at the end of inflation.
The temperature is related to the density by

⇢re =
⇡2

30
greT

4
re, (2.3)

where gre is the number of relativistic species at the end of reheating. Combining Eqs. (2.2)
and (2.3) one finds

Nre =
1

3(1 + w)
ln

 
30 · 3

2Vend

⇡2greT 4
re

!
. (2.4)

Making the standard assumption that entropy is conserved between the end of reheating
and today, one can relate the reheating temperature to the temperature today by taking
into account the changing number of helicity states in the radiation gas as a function of
temperature,

Tre = T0

✓
a0

are

◆✓
43

11gre

◆ 1
3

= T0

✓
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aeq

◆
eNRD

✓
43

11gre

◆ 1
3

, (2.5)
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Cook et al. 2015
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Figure 2: Plots of Nre and Tre, the length of reheating and the temperature at the end
of reheating respectively, for polynomial potentials with exponent ↵. The solid red line
corresponds to wre = �1/3, the dashed green line to wre = 0, the dotted blue line to
wre = 2/3, and the dot-dashed black line to wre = 1. The pink shaded region corresponds to
the 1� bounds on ns from Planck. The purple shaded region corresponds to the 1� bounds of
a further CMB experiment with sensitivity ±10�3 [83, 84], using the same central ns value as
Planck. Temperatures below the dark green shaded region are ruled out by BBN. The light
green shaded region is below the electroweak scale, assumed 100 GeV for reference. This
region is not disallowed but would be interesting in the context of baryogenesis.

considering the 2� bounds on ns
6.

Instantaneous reheating is defined as the limit Nre ! 0, visualized in the figure as the point
where all the lines converge. Such instantaneous reheating leads to the maximum temperature
at the end of reheating, and the equation of state parameter is irrelevant.
(Thus, while not shown, a wre = 1

3 solution would correspond to a vertical line passing
through the instantaneous reheat point.)

From Fig. 2, ↵ = 2/3 can be consistent with Planck bounds, but assuming an equation
of state wre � 0, the model would tend to predict smaller reheating temperatures if one
considers Planck’s 1� bound on ns; using Planck’s 2� bounds, any reheating temperature up

6An exception where �4 may still be viable is in the context of warm inflation [85, 86].
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The reheating history connects the times
of horizon exit & re-entry of perturbations
⇒ shifts CMB observables

“The value of N∗ is not well constrained
and depends on unknown details of

reheating”

CMB-S4 Science Book, 2016
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Newer Hints from the sky

Plateau models of inflation are STILL consistent with Planck data,
⇒ the time of horizon-exit is being constrained.
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Non-Minimal Couplings & Conformal Transformations

Terms of the form ξφ2R are generic in high energies (e.g. RG flow)

SJordan =

∫
d4x

√
−g̃

[
f (φI )R̃ − 1

2
G̃IJ g̃µν∂µφ

I∂νφ
J − Ṽ (φI )

]

gµν(x) =
2

M2
Pl

f (φI (x)) g̃µν(x)

SEinstein =

∫
d4x
√−g

[
M2

Pl

2
R − 1

2
GIJgµν∂µφ

I∂νφ
J − V (φI )

]

V (φI ) =
M4

Pl

4f 2(φI )
Ṽ (φI )
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Potential: Jordan vs Einstein

Potential ”stretching” factor: f (φ, χ) = 1
2

[
M2

Pl + ξφφ
2 + ξχχ

2
]

V (φ, χ) =
λφ
4 φ

4 +
λχ
4 χ

4 + g
2φ

2χ2
concave (flat) potential

V (φI )→ M2
Pl

4

λI
ξI
⇒ H =

MPl√
12

√
λ

ξ2
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Einstein-frame Field-space

In the Einstein frame, the field-space manifold is curved:

GIJ(φK ) =

(
M2

Pl

2f (φK )

)[
δIJ +

3

f (φK )
f,I f,J

]
6= F (φK )δIJ

φI : coordinates in field space ←→ xµ

GIJ
(
∼ 1

φ2

)
: metric on field space ←→ gµν (Note: GIJ ∝ φ−2)

DJAI = ∂JAI + ΓI
JKAK

We can “turn off” the potential
and visualize the effects of the
field-space metric alone.

D.I. Kaiser. E.A. Mazenc & E.I.S., PRD 2013Evangelos Sfakianakis Preheating with Nonminimal Couplings 7/15



Observables

Starting from generic initial
conditions the inflaton quickly
reaches an attractor solution
⇒ Starobinsky-like predictions

ns ' 1− 2

N
, r ' 12

N2

D.I. Kaiser & E.I.S., PRL 2014

Results for the spectral tilt, running
of the tilt and tensor to scalar ratio
are insensitive to initial conditions

AND couplings.
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Effective Mass-squared Ingredients

∂2τ δφk+(k2+a2m2
eff,φ)δφk = 0 , ∂2τ δχk+(k2+a2m2

eff,χ)δχk = 0

m2
eff,I = m2

1,I + m2
2,I + m3

3,I + m2
4,I

m2
1,φ ≡ GφK (DφDKV ) ←→ potential gradient

m2
2,φ ≡ −RφLMφϕ̇

Lϕ̇M ←→ non-trivial field-space manifold

m3
3,φ ≡ −

δφI δ
J
φ

M2
Pla

3
Dt

(
a3

H
ϕ̇I ϕ̇J

)
←→ coupled metric perturbations

m2
4,φ ≡ − 1

6
R ←→ changes in the background spacetime
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Effective Mass-squared: spectator field χ

ξ = 1 ξ = 10
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m2
eff ≈ m2

1 + m2
2 + m3

3

m2
eff ≈ potential + fieldspace + metric
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Effective Mass-squared: ξ = 100� 1

An “unusual” way for adiabaticity violation

We define

A(φ,χ)(k , η) ≡
Ω′(φ,χ)(k , η)

Ω2
(φ,χ)(k , η)

where

Ω2
(φ,χ)(k , η) = k2 + a2m2

eff,φ(η)
������ ������ ������ ������ ������ ������

�

�����

������

������

������

������

������

�����χ
�/��

Adiabaticity is violated for Ω′ � Ω2, rather than Ω ≈ 0.

A broad range of wavenumbers is excited k . ξφHend
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Linear analysis (VERY briefly)

ξ = 0 ξ = 10 ξ = 100
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Particle production and the
equation of state can be altered

by nonlinear effects

⇒ Need for lattice simulations
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Lattice results

Linear ξϕ=10

Lattice ξϕ=10

Linear ξϕ=100

Lattice ξϕ=100
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Summary

(A) ξϕ=1

(A) ξϕ=10

(A) ξϕ=100

(B) ξϕ=1

(B) ξϕ=10

(B) ξϕ=100
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Fast preheating for ξ & 100

Efficient thermalization

Robust single-field attractor

Fast approach to w → 1/3

Non-minimal couplings
quickly lead to a

thermal radiation bath
while preserving
CMB predictions
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Thank you . . .

Planck Collaboration: Constraints on Inflation
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' � 2
N
, r ' 12

N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.

18

Testing plateau models
requires reduced

theoretical error-bars of
the ns − r plot

For Higgs inflation, where the
SM Higgs is the non-minimally

coupled inflaton, the full decay to
SM particles can be computed.
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EIS & van de Vis, 2018
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Effective Mass-squared: ξ = 0.1� 1

Inflaton φ Spectator χ
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m2
eff ≈ m2

1 + m2
2 + m3

3

m2
eff ≈ potential + fieldspace + metric
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Effective Mass-squared: ξ = 10

Inflaton φ Spectator χ
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3
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eff ≈ potential + fieldspace + metric
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Effective Mass-squared: ξ = 100� 1

Inflaton φ Spectator χ

������ ������ ������ ������ ������ ������
�

-����

����

����

�����ϕ
�/��

������ ������ ������ ������ ������ ������
�

�����

������

������

������

������

������

�����χ
�/��

m2
eff ≈ m2

1 + m2
2 + m3

3

m2
eff ≈ potential + fieldspace + metric
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