X-ray and Gamma ray imaging: from art to industry

Large area and/or high resolution

AdvaPIX: Timepix3

WidePIX Medipix3

ADVACAM

Imaging the Unseen
ADVACAM Group

- ADVACAM s.r.o., Prague: **imaging cameras and solutions** (since 2013)
 Spin-off from Institute of Experimental and Applied Physics, Prague
 - 25 employees (+10 in two daughter companies: InsighArt, Radalytica)

- ADVACAM Oy, Espoo: **semiconductor sensors & modules** (since 2012)
 Spin-off from VTT Technical Research Centre of Finland
 - 12 employees

Selected clients/partners

Certified quality
Advacam activities

• ADVACAM offers:
 • Semiconductor sensor fabrication and micro-packaging
 • High-resolution particle counting imaging detectors with energy sensitivity
 • Development of new radiation imaging solutions and methods

• ADVACAM covers all process:
 • All key technologies available in-house (semiconductors, HW, SW, labs, methods)
 • Novel technologies protected by patents (in average 1 new patent every 6 months)
 • High scientific level of the R&D team, professional engineering, certified production.

• ADVACAM intensively collaborates with major companies and institutions in the field
 • Science: CERN, NASA, ESA, JINR Dubna, DTU, INFN, CEA, BAM …
 • Industry: STATOIL (EQUINOR), GE, Thermo Fisher, Applus RTD …

Examples of ADVACAM cameras: The world largest particle counting detector with continuously sensitive area (left) is the WidePIX10x10 with 2560x2560 pixels, smaller units such as WidePIX2x5 (1280x512 pixels) or even miniaturized to USB stick size camera MiniPIX. Custom sizes and shapes are possible.
Large area detectors for X-ray imaging:

Medipix3 based
Imaging with Medipix3: Static & moving

Features:
• Medipix3 technology:
 • 2 thresholds with pixel size of 55 µm
 • 8 thresholds for 110 µm pixels
 • Charge summing logic
• 1280 x 512 pixels = 0.65 Mega pixels (70 x 30 mm²)

Integrated TDI mode (unintentional feature):
• For continuous scanning of moving objects
• Image integration during readout (row by row)
• Expose => read last row => Expose => read row =>
WidePIX-L MPX3 family: detectors for CT and scanning

WidePIX L 2(1)x5
1280x512 pixels
70x30 mm

WidePIX L 2(1)x10
2560x512 pixels
140x30 mm

WidePIX L 2(1)x15
3840x512 pixels
210x30 mm

Features:
55 µm pixels: 2 thresholds
110 µm pixels: 8 thresholds

Suited for:
CT scans, TDI scans (e.g. conveyor belts, welds), robotic scans ...

Jan Jakubek | Medipix Symposium | CERN
9/18/2019
The regular vs “colour” X-ray imaging of test samples

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (µm)</th>
<th>Material</th>
<th>Thickness (µm)</th>
<th>Material</th>
<th>Thickness (µm)</th>
<th>Material</th>
<th>Thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta</td>
<td>75</td>
<td>Cu</td>
<td>75</td>
<td>Mo</td>
<td>75</td>
<td>W</td>
<td>150</td>
</tr>
<tr>
<td>Pt</td>
<td>75</td>
<td>Pt</td>
<td>30</td>
<td>Co</td>
<td>75</td>
<td>Sn</td>
<td>75</td>
</tr>
<tr>
<td>Ta</td>
<td>25</td>
<td>Cu</td>
<td>25</td>
<td>Mo</td>
<td>25</td>
<td>W</td>
<td>50</td>
</tr>
<tr>
<td>Pt</td>
<td>25</td>
<td>Pt</td>
<td>10</td>
<td>Co</td>
<td>25</td>
<td>Sn</td>
<td>25</td>
</tr>
<tr>
<td>Ti</td>
<td>75</td>
<td>Fe</td>
<td>75</td>
<td>Fe</td>
<td>25</td>
<td>Fe</td>
<td>25</td>
</tr>
<tr>
<td>Cu</td>
<td>25</td>
<td>W</td>
<td>50</td>
<td>Ti</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>25</td>
<td>Sn</td>
<td>25</td>
<td>Ag</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>25</td>
<td>Ag</td>
<td>25</td>
<td>Ni</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>75</td>
<td>Ni</td>
<td>25</td>
<td>Fe</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mineral samples on conveyor belt
Ore quality identification

- Mineral analysis and sorting of rock samples
- Samples are continuously moving ion top of conveyor belt
- Belt speed: 0.5-4 m/s

Advantages:
- Material separation
- Resolution => small intrusions
- Speed => fast belt

Iron ore with high density intrusions. Acquired at COMEX laboratory (COMEX SP. Z O.O., Poland)

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 730270
WidePIX L series: connectivity & speed

3 versions according to speed:

<table>
<thead>
<tr>
<th>Status</th>
<th>Connectivity</th>
<th>Frame rate [fps]</th>
<th>TDI speed [m/s]</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal speed</td>
<td>Ready, available</td>
<td>USB 2.0</td>
<td>40</td>
<td>0.6 m/s</td>
</tr>
<tr>
<td>High speed</td>
<td>Ready, under tests</td>
<td>1 GB Ethernet</td>
<td>200</td>
<td>2.8 m/s</td>
</tr>
<tr>
<td>Ultra high speed</td>
<td>Prototype</td>
<td>USB 3.0</td>
<td>300</td>
<td>4.2 m/s</td>
</tr>
<tr>
<td>Ultra high speed + embedded PCs</td>
<td>Coming</td>
<td>10 GB Ethernet (wi-fi, optical ...)</td>
<td>300</td>
<td>4.2 m/s</td>
</tr>
</tbody>
</table>

Modular structure:
- **One module = 5 chips** (1280 x 256 (or 512) pixels, 55 µm pitch)
- Modules are stitched forming longer rows (2, 3, 6 modules) and/or doublets (no TDI)
- **Each module has own communication channel => the speed is independent of number of modules**
Automatic line for mineral sorting in mines:

- **Dual energy X-ray transmission**
- To be combined with data from XRF detectors and 3D stereoscopic optical cameras

Example of installation under conveyor belt

26 000 pixels = 1.5 m in 3 seconds = **100 MPixels**
Robotic scanning of large and complex objects

To be checked:
Bottom part of fuselage of ultralight plane

Robot with X-ray tube

Robot with detector

Patch = old repair

IQI
WidePIX 5x5 CdTe:
The first large area CdTe imaging detector with continuous sensitivity (no gaps)

Features:
- Pixel size of 55 µm
- 1280 x 1280 pixels = 1.6 Mega pixels
- Sensitive area of 70 x 70 mm² (can be larger if needed)
- Gap-less tilling:
 - Gaps between modules smaller than quarter of the pixel
 - Edge pixels of 100 µm

Supported sensor types:
(Bias voltage +/- 500 V)
- CdTe 1 mm
- CdTe 2 mm
- Si 300 µm
Material sensitive imaging with WidePIX 5x5 CdTe

Example 1: PCB

60 kVp, 3 thresholds (7, 20, 35 keV)

High pass filter No tilling artifacts
Application:

Authentication of art: Paintings
Card Players, signed Schikaneder, 20th century, oil on canvas.

Where is the hat?
Signed
Vincent van Gogh

La Crau with Montmajour in the background

~1888
Timepix3:

Fully spectral imaging
AdvaPix TPX3: Features

Timepix3:
- Successor of Timepix: 256x256 pixels, 55 µm pitch
- **Event based readout** (Not frame based as for Timepix): Each hit pixel transmits the hit information immediately.
 - No dead-time for readout of complete frame.
- Ability to measure Energy (ToT) and Time of arrival (ToA) concurrently.
- Time is measured with precision of 1.56 ns
- Chip can produce data stream of 5 Gbit/s.

Example:
X-ray fluorescence (XRF) imaging
Gamma spectrum reconstruction for CdTe

- 2 mm thick CdTe sensor: Efficiency for 120 keV of about 70%
- Coincidence technique removes artifacts and suppresses internal Compton scattering

False events:

- XRF
- Compton

Effects:

Internal XRF reconstruction:
1. Coincident events E1, E2 recognized
2. One of them fits to XRF energy of Cd or Te say E2
3. Event E2 is removed.
4. Energy E=E1+E2 is assigned to E1.

Compton effect reconstruction:
1. Coincident events E1, E2 recognized
2. Compton and Klein-Nishina formula evaluated for E1 and E2
3. More likely scattering scenario is chosen
4. Energy E=E1+E2 is assigned to correct point.
AdvaPIX CdTe 2 mm: Subpixel resolution

Principle:
1. Single photon is creates signal in several adjacent pixels => cluster
2. The energy is measured by each hit pixel
3. Position can be calculated with subpixel precision

Real case:
At 160 kVp with **5 mm steel filter**
⇒ Effective energy is 100-120 keV
⇒ Average cluster of 5 pixels

- Most of clusters are larger than 3 pixels!

- 2.3 Mega pixels, pixel size 9.2 µm

- Spatial resolution: 9 µm (RMS)
Subpixel resolution test: The finest Duplex Image Quality Identifier

Image quality identifier (IQI) is used in industry for evaluation of quality of imaging systems. The Duplex Wire type IQI is used for spatial resolution tests. It should be placed in front of object to be imaged (e.g. welded iron sheets). The last recognized pair of wires determines the resolution (the wires are recognized if the transmission signal between them reaches at least 20% of max – see picture).

The finest Duplex IQI has the last pair made of wires of 20 µm in radius with gap of 20 µm.

Conditions: 160 kVp, 100 µA, 100 cm distance 5 mm iron sheet, 100 s exposure

Original resolution (Raw image)

Photon by photon processing Subpixel 6x (9 µm):

Pair 17 D = 20 µm

Pair 17 D = 20 µm

Result:
• The last pair of wires recognized easily
• Signal between wires = 70% of maximum

⇒ Resolution cannot be determined with the best Duplex IQI
ADVAPIX TPX3 CdTe 1 or 2 mm: Deeply subpixel resolution
Application:

X-ray diffraction

The new application field for ADVACAM
XRD: X-ray diffraction – basic principles

XRD: X-ray diffraction

Formula:

\[n \lambda = 2ds \sin(\theta) \]

- **XRD near the surface**
- **XRD through the volume** (transmission geometry)

Applications:

- Analytical method for identification of crystalline materials
- Almost any material can be made crystalline (even large biomolecules).
- **Industry:** alloys (metallurgy), minerals (geology), polymers ...

Diagram:

- Primary X-ray beam
- Diffracted beam
- Transmitted beam
- Polychromatic X-ray beam
- Diffracted X-ray beams for each wavelength

Equation:

\[n \lambda_i = 2d \sin(\theta_i) \]
Powder diffraction

Powder = many small crystals with random orientation

Alloy = many small crystals, some orientation can prevail

Standard detector

Energy dispersive (spectral)

Each energy channel forms one diffractogram

Real measurement

Silicon powder

Polychromatic X-ray beam

Polycrystalline, powder, fibrous...

Diffraction angle θ_i:

$$ n\lambda_i = 2d\sin(\theta_i) $$

\Rightarrow Angle measured with one wavelength can be recalculated for another wavelength.

Final diffractogram:

$\mathbf{\vec{n}} \cdot \mathbf{\vec{\iota}} = 2d \sin(\theta_i)$

Each channel recalculated to 40 keV and sum all.
Recalculation to single energy and summing results

Silicon powder diffraction

\[n\lambda_i = 2d\sin(\theta_i) \]

Silicon single crystal (wafer)
Real system

X-ray tube with Collimators

Polychromatic X-ray pencil beam

Mineral sample

Timepix3 spectral imaging detector

Detector

Beam stop
Advantages of Timepix3 for XRD

Polychromatic X-ray beam can be used => no monochromator => high intensity => **high speed**
The diffractograms measured for individual energy bins can be recalculated to single energy (monochromatized).
The internal sensor artifacts can be removed (internal XRF, Compton scattering).

High energy XRD can be performed (100 keV range) =>
=> Thick or highly absorbing samples -> Industry (metallurgy, composites, mining ...)
This was possible only with large synchrotron accelerators so far !!!

Internal CdTe XRF signal removal

Thick and highly absorbing sample

<table>
<thead>
<tr>
<th>Pb ore, 5 mm</th>
<th>70 keV</th>
<th>120 keV</th>
</tr>
</thead>
</table>

- Much less background
- Sharper lines
Fig. 10. Transmission XRD measurement of the welded sample (two sheets of stainless steel with total thickness of 2 mm): *Left* – photo with two marks in positions where the measurements were performed, *Middle* – XRD image (channel 50 keV) in position 1 (far from weld), *Right* – XRD image (channel 50 keV) in position 2 (close to weld). The measurement was performed at 160 kVp.
Silicon Cu plate 1 mm Wood
➢ Texture of rolling ➢ Cellulose fibers

Pb+Zn ore 5 mm Stainless steel 2 mm Carbon fiber plastic
➢ Texture ➢ Fiber orientation

Pigment ZnO
Thank you for your attention

Questions?
Back-scatter imaging:
Corrosion under insulation
Imaging with one side access

Back-scattering of radiation passing through the sample

- This principle is well known with visible light passing through transparent environment.
- Some part of the light can be scattered back e.g. by fog, smoke, dust …
- Color (wavelength) of scattered radiation (light) carries information about material
3D imaging based on back scatter

- X-ray or gamma radiation penetrate deep into heavy materials
- Part of radiation passing through the sample scatters back, part is absorbed and part transmits through (similarly as light in fog).
Corrosion under insulation proof of Concept Full Field Irradiation

Principle:
- Source collimator not present
- Geometry parameters: to fit the whole sample area on sensor field
- 2D image of surface: all 3D features summed up

Advantage: Fast, One shot image, Easy for orientation

Disadvantage: No real 3D information, but stereoscopy possible

Set-up geometry (COMET 160 kVp, 1 kW)

<table>
<thead>
<tr>
<th>Pinhole size => resolution</th>
<th>pixels</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma</td>
<td>4.62</td>
<td>0.25</td>
</tr>
<tr>
<td>FWHM</td>
<td>10.87</td>
<td>0.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Background</th>
<th>cnt</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sum</td>
<td>2.27E+07</td>
<td>100.0%</td>
</tr>
<tr>
<td>Sum out of beam</td>
<td>54111</td>
<td>0.2%</td>
</tr>
<tr>
<td>Beam signal</td>
<td>2.27E+07</td>
<td>99.8%</td>
</tr>
</tbody>
</table>

Area 1

Area 2
Depth Sliced Scanning: Linearly Collimated X-ray beam

Scanning parameters:
• Scan step: 1 mm, 60 s per slice
• Mean statistics:

Horizontal slices calculated:
Sample pipes with insulation and stainless steel mantle

For default geometrical parameters assumed 3 inch pipe with spacer
Designed field of view to cover both pies versions, or pie support
Semi 3D: Combining several angles

- Rotation step is 10 degrees while field of view covers more than 60 degrees => each point of the surface is seen in 6 images
- Mantle imperfections smaller than 10 degrees can be suppressed selecting best view (one of six) for every point.

Individual images taken (step=10 deg)

A 3D information on surface morphology can be obtained comparing different angles.
Sliced scanning of artificial defects in 3D

- Scans performed in selected regions of interest => speed

Hole filled with rust

Hole filled with rust
Gamma camera with Timepix3
Single layer Compton camera: TPX3 + 2 mm CdTe

For each Compton scattering event we can:
- Detect coincidence
- Measure both energies: E_1 and E_2
- Measure both positions in 3D

=>$E_0 = E_1 + E_2$

$E_0 = E_1 + E_2$

$\cos \theta = 1 - \frac{m_e c^2}{E_2 (E_1 + E_2)}$

Three 131I gamma sources (364 keV) in distance of 3.5 meters from MiniPIX TPX3 detector.
Miniaturized Compton camera: Source identification

I-131

Cs-137

Na-22

I-131

Cs-137

Na-22
Gamma camera application: Thyroid diagnostics

Thyroid cancer diagnostics and treatment monitoring:

• The second most frequent cancer for women (after breast cancer)
• Current imaging methods offer resolution of about 12 mm in 2D
• Our technology allows
 • 5 times better resolution and 3D (2.5 mm)
 • 4 times lower dose

• Principle:
 • Single layer Compton camera
Highly miniaturized spectral camera supporting Si and CdTe sensors

MiniPIX TPX3: radiation imaging/tracking
Compact, low power, vacuum compatible ...
Each single ionizing particle is registered measuring its
- position, energy, time of arrival and track shape
⇒ Fully spectroscopic imaging (Gamma cam, XRD, XRF ...)
⇒ Radiation monitoring with radiation
type recognition

Available with sensors:
Si (100-1000 µm), CdTe 1 mm
coming: CZT (2 mm), GaAs

Applications:
- X-ray radiography
- XRF, XRD, SWAXS
- Gamma camera (SPECT)
- Radiation monitoring
- Compton camera
- Space
MiniPIX TPX3 count rate in event mode

Maximal speed is limited to reduce power consumption.

Max count rate measured with:
- 300 µm Si sensor at threshold of 3 keV
- 17 keV semi-monochromatic X-rays

More than sufficient for imaging with isotopes.