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Unique capabilities of neutron imaging

20t Anniversary symposium on Medipix and Timepix, CERN, September 18, 2019 2



X-rays versus neutrons

o X-rays interact with electrons in the atoms.

The heavier is the atom — the larger is absorption of X-rays.

X-ray cross section
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Neutron cross section

o Neutrons interact with nucleus and have very different absorption

contrast.

NIST annual report 2003, D. Jacobson, M. Arif, and P. Huffman
Physics Laboratory lonizing Radiation Division
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New detector technology we use
iIn neutron imaging was partially
developed for astrophysical applications:

* Event counting

« UV, soft X-ray sensitive
* High dynamic range

* Low noise/background

* (Good spatial resolution




Detectors developed at Berkeley for NASA applications

MCP detector technology
developed for astrophysical
applications

NASA Image satellite
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Mdipix/Timepix neutron imaging was pioneered by
Institute of Experimental and Applied Physics,
Czech Technical University in Prague

Available online at www.sciencedirect.com =NUCLEAR
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) MCP electron amplifier for UV/neutron detection

Circular pores ~8 um & \

Walls between pores ~2 pum

10B and Gd
doping in glass
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~2 um escape range
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High detection efficiency Slngle pore
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Enabling technology: MCP/Timepix detectors

* Bright pulsed neutron beams

* New neutron counting detectors with high timing
and spatial resolution @ high count rates

v o Active area with 2x2 Timepix

chips (28x28 mm?2)
o Fast parallel readout (x32) -
allowing ~1200 frames per ' S !
second and ~300 pus dead time MCPS§ —¥ =
a  Wide transmission 64 data lines \
spectrum measured @100 MHz <z 64 data lines
at the same time. FPGA <: = @100 MHz
~1.8 = z FPGA
Mb/frame, Timepix >*Vacuum ~10- 18
up to 1200 readout Torr Mb/frame
frames/s up to 1200
frames/s
Up to ~6 Gb/s

\&

A.S. Tremsin, et al., NIM A 787 (2015) 20-25.
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Neutron cross sections vs. energy

Thermal range
1-5 A (~4-100meV)

Bragg edges

Energy selective radiography with cold neutrons
for crystalline materials
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Ref.: Javier Santisteban, Dept. Materials Engineering, The Open University, UK
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From radiography to
energy resolved imaging

Images are taken from google images website
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Energy-resolved neutron imaging: time of flight

Neutron counting
2D detector

Pulsed Neutron Source o~
20 - 60 Hz ;

~100 ns pulses Propagating neutron pulse
D ) me) = .

Trigger synchronized to the source

Sample !

All energies are imaged
at the same time!

XY,T for every M

detected neutron

— o ‘imnmmmmn

c 055 [ :.: .
2 05 ~250,000 spectra is measured
= 045 . =
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Application examples.

Optimization of crystal growth:
In-situ imaging



Historically, the Bridgman crystal growth process
has been simple, relatively uncontrolled, ...

« “The general method is
that of slow solidification |

in the molten condition in
a suitable mold of glass |
or quartz tubing is slowly S ,
lowered through the ‘
bottom of the furnace

into the air of the room or
into a cooling bath of oil” |

- “Itis important that air
drafts be kept from the
emerging mold, as _
otherwise new centers of
solidification may be
started.”

P. W. Bridgman, “Certain Physical Properties of Single Crystals of Tungsten, Antimony,
Slide by Prof. J.J Derby, Bismuth, Tellurium, Cadmium, Zinc, and Tin,” Proceedings of the American Academy of
Univ. Minnesota Arts and Sciences, Vol. 60, No. 6 (Oct., 1925), pp. 305-383.



Industrial Bridgman furnace: RMD

|

A

A two-zone furnace, which allows 2” growth.
Theoretically it can be used in neutron imaging experiments,
although our 5-zone furnace is better suited for it.

Proc. of SPIE Vol. 8507 850716-1,
Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV
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@©Crystal growth: In-situ measurement

Understand and optimize growth
process for single crystal materials.
Transfer that kno%edge to industrial
scale production.

Dedicated furnaces optimized for
neutron imaging were developed.



Experimental setup pulsed beam: energy resoled imaging

Neutron counting detector

- 2828 mm2 active area
- Position and time of arrival for each
detected neutron <] ' o

— Measured

—~Calculated

s ' ~ -: ~ -
Pulsed neutron beam Furnace, crucible j o 4

frequency 25 Hz and charge 0.005 0.5 50

Neutron energy (eV)

o o oo ¢4
[T S S 4

Transmission

~250000 spectra are w
d Map of Eu
AL concentration
at the same time,

each within 55 um pixel!
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One objective of furnace design is to tailor the shape of
the melt-solid interface to minimize deleterious
interactions with ampoule wall .M

3 &

Concave interface Convex interface
moves defects keeps defects
toward center at periphery

Interface
Motion

Ampoule
Wall

Concave interface Convex interface

J eff Derby, U n iv_ M i n nes Ota 20t Anniversary symposium on Medipix and Timepix, CERN, September 18, 2019 17



Crystal growth — in situ diagnostics

Initially 1 mm/hr pull speed. Increased to 2 mm/hr.
Strong asymmetry of interface seen at high speed.
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1. Interface is convex, as desied.
2. Interface remains at the same position/moves slowly during regular growth.

Should allow real-time adjustment of T profile
to keep the interface convex and at the desired location.

20 min image acquisition per step
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Controlled interface shape

Sample width ~11 mm

Booster heater area. Neutron scattering distorts the
image.

Interface between the liquid
and solid phases is convex.

Contrast is due to segregation of Eu (Csl:Eu)
and Li (in TLYC) between the liquid and solid
phases.

TLL1YCls:Ce

(Csl:0.5%Eu)
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In-situ Eu distribution quantification

Scientific Reports 7 (2017) 46275
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In-situ measurement of strain
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Load in Spiralock threads: vibrational stability

Steel screws in Al base

Wedge ra'mp Spiralock™

' F / y Steel screws in stainless steel
N m
A.S. Tremsin, et al., Strain 52 (2016) 548-558
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Load in Spiralock threads: vibrational stability

i

Standard
A conventional
thread is axial
loaded, increasing
probability of
shear, especially
in soft metals.

E

Axial
Standard
A conventional
thread is axial
loaded, increasing
probability of
shear, especially
in soft metals.

Axial

=

E

' Spiralock

A spiralock thread
form distributes the
load radially beyond
the threads,
significantly
increasing the
strength of a

connection.

Spiralock
A spiralock thread
form distributes the
load radially beyond
the threads,
significantly
increasing the
strength of a
connection,

Microstrain (pe)

A.S. Tremsin, et al., Strain 52 (2016) 548-558
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Future capabilities enabled by Timepix4

Larger contiguous MxN area (TSVs)
Better timing resolution

Huge dynamic range
Photon/particle counting

28x28 mm
(2x2 Timepix)

James
Webb

Hubble  Space LUVOIR 16 m!!
Space Telescope (~2035)
Telescope 6.9m

24m  (~2021) :.8...8.8
(19%0) o2e2e% %
820850
\ (>~ )

HST LUVOIR
16 m

200x200 mm
(7x7 Timepix4)
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Thank you for your attention!

This work was done within the Medipix collaboration.

We would like to thank Medipix collaboration for the readout electronics and data acquisition
software (Advacam, Prague and Espoo, NIKHEF, Amsterdam and IEAP, Prague).

This work was supported in part by U.S. agencies: NASA, DOE, NSF, NIH and NNSA.
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