A0 University of
s Lurich™

Thermal-Dynamic Dark Matter
Finite Temperature Effects in the Early Universe

Michael J. Baker

Next Frontiers in the Search for Dark Matter, GGl
23 Sep 2019

Based on 1608.07578 (PRL), 1/12.03962 (JHEP), and 1811.03101 (JHEP)
MJB, M. Breitbach, L. Mitthacht, J. Kopp



https://arxiv.org/abs/1608.07578
mailto:http://dx.doi.org/10.1103/PhysRevLett.119.061801?subject=
http://arxiv.org/abs/arXiv:1712.03962
https://link.springer.com/article/10.1007/JHEP03(2018)114
https://arxiv.org/abs/1811.03101
https://link.springer.com/article/10.1007/JHEP05(2019)070

S
P\oce\e(a\o(
WG oo \
=
o v
NS
cos™

Key:

g quark
g 9gluon

@ electron

V neutrino

L muon Ttau

W, Z bosons
A meson
k)@ ® baryon
##% ion

@ atom

N\, photon
‘ galaxy

* star

black
hole

<<-7I_Qc-]

a] O
W sirep o|q)ssOd

Sjo
| 191 19))e



The Main Message

Finite temperature eftects, while often ignored,
can have a dramatic conseguence on the relic
abundance of particles

Show this in several production mechanisms of
dark matter



Approach

One BSM model with several new scenarios for
producing DM:

* |nstantaneous freeze-out
* Kinematically induced freeze-in
* Decaying dark matter

Main tools:

* One-loop eftective potential at finite temperature
* Boltzmann equations



e Qutline

e Model

* Particle physics and the eftective potential at finite

temperature
Instantaneous freeze-out
- Kinematically induced freeze-in

* Two step phase transition (vev flip-flop)
- Decaying dark matter
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« BSM Model

Field Spin Lio mass scale
S 0 +1 0.1 GeV — 500 GeV
X 5 —1 5 GeV — 5 TeV
Y % —1 b GeV — 5 TeV
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Particle Pnhysics
and the Eftfective
Potential at Finite |



e Particle Physics at Finite Temperature

Can we apply our usual zero-T techniques?
What happens to vertices and propagators”

Imaginary-time formalism: field operators quantized on
0<it<1/T

"The great advantage of this formalism is that perturbation
theory may still be organised into a diagrammatic expansion
with the same vertices as at T = 0." [Weldon, 1983]



https://journals.aps.org/prd/pdf/10.1103/PhysRevD.28.2007

* \What happens to propagators?

The scalar two-point Green’s function is

1
D n» 9 — — —
(on, ) Wy — P % —m? — (wn,P)
_, 1-loop . - e.o. )\T2
7T(me) I? 7T(1) (wn — O,p — O) :g; —4

Propagator pole receives FT correction

Also for fermions, but negligible for us
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e Particle Physics at Finite Temperature

We can apply our usual zero-T Feynman rules,
after substituting T-dependent masses

What about vevs?
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e The Effective Potential

T > Tew T ~ 0

4 V©) A V(o)
| have no vacuum
expecation value!

[Philip Tanedo]
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The effective potential can be calculated in FTQFT using a
loop expansion, with leading contribution

Veff _ Vtree VCW VT Vdaisy
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lNnstantaneous
Freeze-out



s 1 &ws 4+ [y@;XS + h.c.]+mX>ZX + ¢

‘2 HTH — Ny (HYH)? + - 1252 54 i 1)

e 1) and S will remain in contact with the thermal bath throughout

o my(T) = iy + y, (S)(T)
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7 Open when
X N My > My, (T) -+ ms(T)
) S
X (8
X { Suppressed by
m 3
PEERTEEAN v = (Tx)
/ \
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Portal coupling is small, so v, s,T7) =v"(H,T) + V(s T)
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Masses and vevs [GeV]
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Masses and vevs [GeV]
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ms(TZ 0) =1 GeV
)\S: 1,y¢:2

H m, = 77GeV, my, = 74 GeV
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mS(T: O) =1 GeV
As = 17y¢:2

H m, = 77GeV, m, = 74 GeV
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We have demonstrated a new method of obtaining the relic abundance

Without finite T effects, yield would be 10 orders of magnitude too large
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Kinematically
iInduced Freeze-in



we'll assume ¥ stays in thermal equilibrium via other NP
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Assume x begins with negligible abundance

My > my +mg(T) ms (1) > m, + my,

(0 X -
AN «Mi
/’ ’¢ \\ -7

S S S b

Suppressed by yy = 0.01
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Masses and vevs [GeV]
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Thermal effects increase relic abundance by orders of magnitude




Decaying Dark
\Viatter



20






Masses and vevs [GeV]
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Assume X begins with thermal abundance

(8 X S X (2
A \:Y" Ranaddl
X —— 02 S
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Open when Suppressed by yyy ~ 1077

My > Ty, (T) -+ ms(T)
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We have demonstrated another new method of obtaining the relic abundance
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Conclusions



e Conclusions

Thermal effects are important in the early universe!
Temperature dependent masses affect kinematic thresholds
NP scalars may temporarily obtain vevs

This can have a dramatic influence on DM abundance

lllustrated this with three scenarios, more are possible

Thank you!
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-Xperimental
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 Experimental Probes

Detection of X hindered by small couplings
But S and ¥ couplings can be relatively large, so can be produced

Two-step phase transition scenarios may give a subdominant
population of S and ¥
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Two Step Phase
Transition



e Phase Transitions

Second Order Phase Transitions First Order Phase Transitions

V(o) T =T, V(o) T =T,
£
X
¢ T, < T,
\JT < T, |

TPT — TC Tn 1 TC
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e Bubble nucleation and Cosmotransitions

Bubble nucleation rate per volume:

£ B AG_SE/T + M XX T mwﬁw

T

P(one bubble nucleation per Hubble volume) ~ 1

S
28140 Linde, 1983

i Anderson & Hall, 1992

Use cosmotransitions Wainwright, 2011
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* Vev Flip-Flop: Effective Potential
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The Effective
Potential



e The Effective Potential

At zero temperature:

‘It would be wondertul if, in the full guantum field theory, there were a function
whose minimum gave the exact value of (¢). We will exhibit a function with
these properties, called the effective potential.”

(Peskin & Schroeder)

Veff _ Vtree 4+ Vl-loop 4o

VWV (h, S) :Z i m(h, S) {log — =

|
£ mi(h) = Sy’

Coleman & Weinberg, 1973
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e The Effective Potential

In finite temperature QFT, we can’t rely on asymptotic states. Instead, we
apply ideas from thermodynamics, then express the partition function as a
path integral in imaginary time with periodic boundary conditions. The one-
loop expansion of the effective potential then becomes

+00
_ J/tree 4 Z n; 1’ Z /

nN=——aoo

d3
5 log {k2+w +m2(h,S)| +

Veff _ Vtree + VCW + VT + Vdaisy

4
VT (h, S) ”"’T / dz 22 log |1+ exp ( _ \/332 +m2(h, S)/T2)

Dolan & Jackiw, 1974
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e The Effective Potential

Veff _ Vtree + VCW + VT + Vdaisy

1/ daisy _ o an( h S —|— 11, (T)}% _ [mg(h, S)]

N

)

E.Q., Mhcocr = 3577 (99° + 39" + 24 g + 12y7 + 2))

Dolan & Jackiw, 1974
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