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Brief Summary for Inflation at CMB

@ The dimensionless power spectrums for scalar and tensor sectors
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@ The power spectrum is conventionally parametrized as
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@ The parameters in Planck '18 (for the pivot scale k. = 0.05Mpc_1)
o A, =(2140.03)-10"° (Planck TT, TE, EE + lowE + lensing) , 68% CL
o ns =0.9649 £0.0042  (Planck TT, TE, EE + lowE + lensing), 68% CL
e as = —0.0045 £ 0.0067 (Planck TT, TE, EE + lowE + lensing) , 68% CL
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Inflationary models
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Figure: Predictions of selected inflationary models (taken from Planck '18)
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How to probe smaller scales?

Inflation is expected to last roughly 60 e-folds depending on post-inflation physics.
@ CMB and LSS probe the wavenumbers in the range 107* < k/Mpc*1 < 0.1
e 11— and y— distortions extend this range up to ~ 10* Mpc ™t
@ This corresponds only 18 efolds of inflation.

The rest ~ 40 e-folds is unexplored apart from the bounds and potential
signatures associated with primordial black holes (PBHs), and the GW signatures!J

See also talks of Clesse, Croon, Hooper, Racco, Ramani on PBH
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Figure: Density/curvature perturbations, taken from arXiv;1110.2484
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Basic Assumptions and Observational Signatures

@ Let's assume an increase in scalar fluctuations at scales much smaller than
CMB bump (not assume a specific mechanism to produce this feature)
Inevitable consequences! ( See also talk of Racco )

o (induced) GWs via nonlinear coupling ( +¢ — h

Acquaviva+'02 ; Mollerach, Harari, Matarrese '03, Ananda, Clarkson, Wands '06 ; Baumann+'07

BY () 4 2H B (1) + K ha, k() = 28, k(n) (3)
Suk(n) / &p 0 0y (@)

2
QGWuPh,m,«(/ch's) x (CCCO) (5)

o Primordial Black Holes (may or may not be part of DM, but our conclusions
are independent from that)

@ Could we measure these observables so that we can learn more about
primordial /high energy universe?
Possible!

Caner Unal Induced GWs and Primordial NG September 25, 2019 5/17



NonGaussianity

@ When curvature fluctuations are amplified, they usually come together with
non-trivial amount of NG

e Slowing down the inflaton leads to quantum diffusion
Pattison+ '17 ; Franciolini+ '17 ; Biagetti+ '18 ; Ezquiaga, Garcia-Bellido '18
o Particle production is inherently NG via 2 — 1 and 3 — 1 processes
Barnaby, Peloso '10 ; Anber, Sorbo '12 ; Bugaev, Klimai '13 ; Garcia-Bellido, Peloso, Unal '16...

@ Let’s allow some NG

c d®p ¢ . G NG
Go= G+t [ GERGEAE, . = P = PEW + W) (6)

202

Pcc(k) = A-exp [—|n2(k/k*)]

3
pUS) = 2 [P P PSR —B) (D)

o Effects of NG :Scalar modes peak at a larger frequency, more contraction due
to more legs, wider signal due to convolution
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Effects of NG and Contractions of Four Point Function
2
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Results (0 ~ ANpeak = 1)

QRS peaks at larger freq + wider + larger amplitude !
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1Large NG limit, A - f,%L > 1, was studied by Nakama, Kamionkowski, Silk 17 ;
Garcia-Bellido, Peloso, Unal '17 ; Cai, Pi, Sasaki '19
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Results (0 ~ ANpeak = 1)

QNG peaks at larger freq + wider + larger amplitude
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Bartolo, De Luca, Franciolini, Lewis, Peloso, Racco, Riotto '18
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Constraints
Byrnes, Cole, Patil '18 ; Inomata, Nakama '18 ; Kalaja+'19
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Figure: Constraints on P¢ taken from arXiv:1811.11158
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Observational Signatures for Narrow Spectra

Signature 1: A not-very-well-resolved double peak.
Signature 2: A bump in UV tail even if NG component of GW spectrum is
completely subdominant.

With PTA and LISA : (Qewh? ~ O(1071%), fy. ~ 0.5 possible
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@ Enhanced small scale perturbations (usually contain NG component) lead
PBH and induced GWs

@ GW spectrum (2-pt function) can probe the statistical properties of the small
scales of inflation and indirectly effective operators

@ With PTA and LISA sensitivity, fy; ~ 0.5 possible

@ Interesting coincidence: two future most powerful interferometers will probe
the mass range for PBH allowing them to be DM(still under debate)
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One Explicit Model with Large Prim. NG (x? Distribution)
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PBH Abundance with Large Prim. NG

with no evolution assumption

Q.. vs M (current) [} vs M (formation)
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1073 PBH production is extremely sensitive to statistics (large
curvature perturbations lie at the tail of the distribution!)

1077 ) N . . .
102 10% 10% 10% Non-Gaussian statistics (ie. Chi-square) is more efficient

Log,,[M/g] than Gaussian statistics in PBH production.
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Observables

CMB 12 Distortion ( Nakama, Chluba, Kamionkowski ’17)
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GW Signatures

LIGO GWs & Mgy ~ O(30)M,,
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Mass Evolution of BH from GWs

GW w/ Non-Trivial Evolution Garcia-Bellido, Peloso, Unal ‘17

Almost all previous studies assume trivial evolution (ie neglect gas accretion onto PBH and mergers)

(neglcting GW leakage) Simplest Parametrization
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‘With non-trivial evolution — Smaller M — Higher f;

since fo M-1/2

‘With non-trivial evolution. PBHs form with smaller masses. In result, primordial distortion signal does not enhance
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