# Early-Universe Simulations of the Cosmological Axion

Malte Buschmann University of Michigan

9/26/2019 GGI Dark Matter Workshop

arXiv:1906:00967 MB, Joshua W Foster, Benjamin R Safdi

LEINWEBER CENTER FOR THEORETICAL PHYSICS UNIVERSITY OF MICHIGAN



National Energy Research Scientific Computing Center

# Axions

• Axions originally introduced to solve the strong CP problem:

$$\mathcal{L} = \theta \frac{1}{16\pi^2} F^a_{\mu\nu} \tilde{F}^{\mu\nu a} \longrightarrow \mathcal{L}_{axion} = (\partial_\mu a)^2 + \frac{(a/f_a + \theta)}{32\pi^2} F\tilde{F}$$

• U(1) PQ symmetry **spontaneously broken** at high scale



#### **Post- vs Pre-inflationary scenario**

Two different scenarios can be considered: Breaking the PQ symmetry **before** or **after** inflation

# Post- vs Pre-inflationary scenario

Two different scenarios can be considered: Breaking the PQ symmetry **before** or **after** inflation



two free parameters:  $\theta_0$  ,  $f_a$ 

one free parameter:  $f_a$  inhomogeneous at small scales

after inflation:

 $\rho(\theta_0 = 0.1)$ 

 $\rho(\theta_0 = \pi/8)$ 

 $\Omega_{a,0} \sim \langle \theta_0^2 \rangle$ 

 $\rho(\theta_0 = 1)$ 

 $\rho(\theta_0 = 0.1)$ 

 $\rho(\theta_0 = 10^{-3})$ 

# **Post- vs Pre-inflationary scenario**

Two different scenarios can be considered: Breaking the PQ symmetry before **Focus of this** 

talk!

#### Main goals:

- 1. Obtain axion mass with which correct relic abundance is reached
- 2. Characterise inhomogeneities

after inflation:

 $\rho(\theta_0 = 0.1)$  $\rho(\theta_0 = 0.1)$ 

 $\rho(\theta_0 = 10^{-3})$ 

 $\rho(\theta_0 = 1)$  $\rho(\theta_0 = \pi/8)$ 

 $\Omega_{a,0} \sim \langle \theta_0^2 \rangle$ 

one free parameter:  $f_{a_{\perp}}$ mogeneous at small ales









Malte Buschmann (University of Michigan)

Early-Universe Simulations of the Axion





time (not to scale)







#### Facts about Oscillons:

- 1. They are regions with large field values/large energy density
- 2. Their size is given by the axion wavelength ~ inverse  $m_a(T)$
- 3. They remain stable as long as  $m_a(T)$  is increasing
- 4. Start to dilute once the axion reaches its zero-temperature mass





#### Facts about Oscillons:

- 1. They are regions with large field values/large energy density
- 2. Their size is given by the axion wavelength ~ inverse  $m_a(T)$
- 3. They remain stable as long as  $m_a(T)$  is increasing
- 4. Start to dilute once the axion reaches its zero-temperature mass



#### **Facts about Oscillons:**

- 1. They are regions with large field values/large energy density
- 2. Their size is given by the axion wavelength ~ inverse  $m_a(T)$
- 3. They remain stable as long as  $m_a(T)$  is increasing
- 4. Start to dilute once the axion reaches its zero-temperature mass











time

**η=1.10** 

#### https://youtu.be/1By1DMq1Epl

Malte Buschmann (University of Michigan) -

Early-Universe Simulations of the Axion



scale)

(not to

time



National Energy Research Scientific Computing Center



#### https://youtu.be/1By1DMq1Epl







#### After the simulation ends:

1. Analytic evolution to matter-radiation equality 2. Identify over-dense regions  $\delta = (\rho - \bar{\rho})/\rho$ 



# Characterising the minihalo spectrum



Inflation

scale)

(not to

time

Important information for: microlensing, pulsar timing surveys, (in)direct detection, ...

# Characterising the minihalo spectrum



Inflation

thermal spec.

linear EOM

matter-radiation

(not to

time

alvtid

aD

Important information for: microlensing, pulsar timing surveys, (in)direct detection, ...







Malte Buschmann (University of Michigan)

Early-Universe Simulations of the Axion



# Obtaining the relic abundance





# Obtaining the relic abundance



#### Correct relic abundance reached for: $m_a = 25.2 \pm 11.0 \ \mu eV$



# **Obtaining the relic abundance**



Correct relic abundance reached for:  $m_a = 25.2 \pm 11.0 \ \mu eV$ 

# linear EOM matter-radiation

 $\Sigma_a$ 

#### **Uncertainties coming from:**

31% uncertainty on the relation between abundance and  $f_a$ 27% uncertainty from mass growth  $m_a(T)$ 15% from violation of scaling regime

~10% others: statistical, fixed degrees of freedom,...





# Summary

Assumption: PQ symmetry broken after inflation

We performed simulations through the PQ and QCD phase transition to matter-radiation equality

Identified minihalo mass spectrum Typical mass: 10<sup>-14</sup> solar masses



Determined the axion mass that reproduces the correct relic abundance:  $m_a = 25.2 \pm 11.0 \ \mu eV$ 

Furthermore: Simulation data publicly available for further studies: https://zenodo.org/record/2653964 (e.g. gravitational N-body simulations)

# Thank you!

#### Inflation **Sources of Uncertainties on the Axion Mass** thermal spec. simulation MB, Foster, Safdi (1906:00967) PQ transition Klaer and Moore ---- Kawasaki et al. This Work radial @ vev $\odot$ analyti scaling regime? $\Omega_a$ $10^{4}$ **QCD** transition mass growing domain walls $5 \times 10^{14}$ $10^{15}$ simulation $f_a$ [GeV] network collapse oscillons form In particular oscillons make it

. impossible to simulate at low breaking scales. Extrapolations needed:

$$\rho_a \propto f_a^{(6+n)/(4+n)}$$

with n=6.68 from lattice simulations

scale)

(not to

time

alvtid

aD

mass constant

oscillons decay

field linear

linear EOM

matter-radiation

gravity

today

**Expected:**  $\alpha = (n+6)/(n+4) \approx 1.187$ Simulation:  $\alpha = 1.24 \pm 0.04$ 

Leads to 31% uncertainty on axion mass

#### Inflation **Sources of Uncertainties on the Axion Mass** thermal spec. simulation MB, Foster, Safdi (1906:00967) PQ transition Klaer and Moore ---- Kawasaki et al. This Work radial @ vev $\odot$ analyti scaling regime? $\Omega_a$ $10^{4}$ **QCD** transition mass growing domain walls $5 \times 10^{14}$ $10^{15}$ simulation $f_a$ [GeV] network collapse oscillons form In particular oscillons make it impossible to simulate at low breaking scales. mass constant oscillons decay Extrapolations needed: $\rho_a \propto f_a^{(6+n)/(4+n)}$ field linear with n=6.68 from lattice simulations linear EOM ത aD matter-radiation Could be as high as 8.2! gravity We rerun simulation with 8.2 (in 2D)

scale

(not to

time

today

Leads to 27% uncertainty on axion mass



scale

(not to

time



Scaling regime: 1 string per Hubble volume

We see logarithmic deviations from this assumption similar to *M. Gorghetto & G. Villadoro 2018*!

#### More on this later!



10



#### Scaling regime: 1 string per Hubble volume

We see logarithmic deviations from this assumption similar to *M. Gorghetto & G. Villadoro 2018*!

#### More on this later!



#### Simple estimate:

Reinterpretation of the volume of the initial state changes string density



Seems to be a small affect. No trend visible.

We estimate a 15% uncertainty related to scaling violation.



#### What is the reason for this?

Number density not conserved Axion has to still live on the circle





#### What is the reason for this?

Number density not conserved Axion has to still live on the circle

Inject mode large amplitude mode into field: PQ field + A cos(H x)



Malte Buschmann (University of Michigan) -

Early-Universe Simulations of the Axion



#### What is the reason for this?

Number density not conserved Axion has to still live on the circle

Inject mode large amplitude mode into field: PQ field + A cos(H x)



Malte Buschmann (University of Michigan) - Early

Early-Universe Simulations of the Axion